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submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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We discuss the computational complexity of special cases of the three-dimensional
(axial) assignment problem where the elements are points in a Cartesian space and
where the cost coefficients are the perimeters of the corresponding triangles measured
according to a certain norm. (All our results also carry over to the corresponding
special cases of the three-dimensional matching problem.)

The minimization version is NP-hard for every norm, even if the underlying
Cartesian space is 2-dimensional. The maximization version is polynomially solv-
able, if the dimension of the Cartesian space is fixed and if the considered norm has
a polyhedral unit ball. If the dimension of the Cartesian space is part of the input,
the maximization version is NP-hard for every Lp norm; in particular the problem
is NP-hard for the Manhattan norm L1 and the Maximum norm L∞ which both
have polyhedral unit balls.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The three-dimensional (axial) assignment problem (3AP) is an important and well-studied problem in
combinatorial optimization. An instance of the 3AP consists of three sets X, Y , Z with |X| = |Y | = |Z| = n,
and a cost function c : X × Y ×Z → R. The goal is to find a set of n triples in X × Y ×Z that cover every
element in X∪Y ∪Z exactly once, such that the sum of the costs of these triples is minimized. In the closely
related maximization version max-3AP of the 3AP, this sum is to be maximized. The book [1] by Burkard,
Dell’Amico and Martello contains a wealth of information on the 3AP and other assignment problems.

A prominent special case of the 3AP is centered around some metric space (S, d) where S is a set and where
d is a distance function on S×S (that hence is symmetric, non-negative, and satisfies the triangle inequality).
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The elements in X ∪Y ∪Z are points in S, and the cost c(x, y, z) of a triple (x, y, z) ∈ X×Y ×Z is given by

c(x, y, z) = d(x, y) + d(y, z) + d(z, x). (1)

Costs of this type are called perimeter costs; intuitively speaking, they measure the perimeter of the triangle
determined by three points x, y, z in the metric space.

The 3AP is well-known to be NP-hard; see for instance Karp [2] or Garey and Johnson [3]. Spieksma and
Woeginger [4] establish NP-hardness of the special case of perimeter costs (1) where the underlying metric
space is the two-dimensional Euclidean plane with standard Euclidean distances. Crama and Spieksma [5] de-
sign a polynomial time approximation algorithm with worst case guarantee 4/3 for the 3AP with perimeter
costs; their approach works for arbitrary metric spaces without imposing any additional structural con-
straints. Burkard, Rudolf and Woeginger [6] exhibit a polynomially solvable special case of the max-3AP
where the costs are decomposable and products of certain parameters.

Results of this paper. We study 3AP and max-3AP with perimeter costs in Cartesian spaces under ar-
bitrary distance functions. On the negative side, we derive NP-hardness results that contain and generalize
the known results from the literature for the standard Euclidean distances. On the positive side, we derive
polynomial time algorithms for certain special cases of max-3AP where the distances are defined via norms
with polyhedral unit balls. Our main results are the following:

(A) Problem max-3AP is polynomially solvable, if the dimension of the underlying Cartesian space is a fixed
constant and if the underlying norm has a polyhedral unit ball.

(B) Problem max-3AP is NP-hard, if the dimension of the underlying Cartesian space is part of the input
and if the underlying norm is any fixed Lp norm. This hardness result in particular holds for the
Manhattan norm L1 and the Maximum norm L∞ which both have polyhedral unit balls.

(C) Finally, the minimization problem 3AP is NP-hard for any fixed norm, even if the underlying Cartesian
space is 2-dimensional.

Result (A) heavily builds on the machinery developed by Barvinok, Fekete, Johnson, Tamir, Woeginger and
Woodroofe [7] for the Travelling Salesman Problem (TSP). Also the TSP is polynomially solvable, if the
cities are points in some Cartesian space of fixed dimension and if the distances are defined via norms with
polyhedral unit balls. While the framework for our result (A) is taken from [7], the technical details and the
combinatorial features are very different and require a number of new ideas. Result (B) is done by a routine
NP-hardness reduction from a closely related NP-hard graph problem. Result (C) builds on the NP-hardness
reductions of Spieksma and Woeginger [4] and Pferschy, Rudolf and Woeginger [8] for Euclidean distances.
In the Euclidean case, one may use Pythagorean triangles as simple building blocks to control the distances
between points and to ensure rational coordinates that can be processed by a Turing machine. In the general
case (C), it is much more tedious to prove the existence of the corresponding building blocks.

Organization of this paper. Section 2 summarizes some standard geometric definitions around distances,
norms and unit balls. Result (A) for the max-3AP is derived in two steps. First Section 3 derives an auxiliary
result on the max-3AP under so-called tunneling distances, and then Section 4 establishes that max-3AP
under polyhedral norms is a special case of the tunneling case. Section 5 contains the proof of result (B).
Section 6 constructs certain lattices with certain useful properties; these lattices are then used in Section 7
to prove the NP-hardness result (C). Section 8 translates our results (A), (B) and (C) into corresponding re-
sults for the maximization version and the minimization version of the three-dimensional matching problem.
Finally, Section 9 concludes the paper with a short discussion and some open questions.
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