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a b s t r a c t

Given an undirected graph, a bramble is a set of connected subgraphs (called bramble
elements) such that every pair of subgraphs either contains a common node, or such
that an edge (i, j) exists with node i belonging to one subgraph and node j belonging
to the other. In this paper we examine the problem of finding the bramble number
of a graph, along with a set of bramble elements that yields this number. The
bramble number is the largest cardinality of a minimum hitting set over all bramble
elements on this graph. A graph with bramble number k has a treewidth of k−1. We
provide a branch-and-price-and-cut method that generates columns corresponding
to bramble elements, and rows corresponding to hitting sets. We then examine the
computational efficacy of our algorithm on a randomly generated data set.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The concept of brambles is first introduced by Seymour and Thomas [1], who also show that a graph
having bramble number k has a treewidth of k − 1. Following this result, determining a graph’s bramble
number received attention from many researchers. Bodlaender et al. [2] provide a heuristic for computing
brambles on general graphs (and on planar graphs with slight modification of the algorithm), where brambles
are constructed such that they potentially give the best bramble order while keeping the computation and
construction times reasonable. Many other studies focus on efficient algorithms for specially structured
graphs. On graphs that can be formed as Cartesian products of complete graphs, Lucena [3] finds lower
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bounds on treewidths by using brambles. This approach employs a method to generate brambles for such
graphs so that computing the orders of these brambles is simplified. Birmelé et al. [4] use brambles to show
that a k-prism has a treewidth of O(k2). By the Graph Minor Theorem [5], there exists a function f such
that for every graph with treewidth at least k, there is a bramble of order k + 1 and size f(k). Grohe and
Marx [6] show that there is an exponential lower bound for the function f , and opens the question of the
existence of an exponential upper bound on f . Grigoriev et al. [7] compute brambles in grid minors to
provide lower bounds on planar graphs.

In this paper we provide an optimal integer programming algorithm to compute a general graph’s bramble
number. Finding optimal brambles may be beneficial for clustering or vertex covering problem types where
the subsets must have some type of pairwise “connectivity” or hierarchical structure. Several different
clustering methods and connectivity measures have been studied in the operations research literature.
Mokken [8] introduces the concepts of cliques, clubs, and clans, each of which provides a different definition of
connectivity and a different structure of clustered subgraphs. Bourjolly et al. [9] present an exact branch-and-
bound algorithm to solve the maximum k-club problem. Veremyev and Boginski [10] extend the definition
of clubs with R-robust k-clubs, and provide a compact formulation. Another class of clique relaxations are
k-plexes [11]. Balasundaram et al. [12] introduce the maximum k-plex problem, and their work is further
extended by McClosky and Hicks [13]. The maximum vertex packing, or independent set, problem is the
same as the clique problem on the complement of a graph. Relaxations of the vertex packing problem have
been studied in [14,15].

A survey of clique-defining properties exploited in clique relaxation models is compiled by Pattillo
et al. [16], where the authors also propose a classification scheme for the resulting clusters. Mehrotra
and Trick [17] use a branch-and-price algorithm for the maximum weighted clique problem, and Ji and
Mitchell [18] extend this work by introducing minimum clique size constraints. Fellows et al. [19] study
clusters that overlap by either sharing an edge or a node, and present their identifying characteristics along
with the computational complexity of determining clusters with overlaps. In this paper, we refer to such
pair of clusters as touching instead of overlapping. Feremans et al. [20] review different clustering problems
including the generalized minimum clique problem, in which the optimal solution consists of a subgraph
with vertices defined by a hitting set over a set of clusters.

Vertex covering is similar to vertex partitioning with the relaxation that vertices may be shared by subsets;
this version of vertex covering is not to be confused with the more known vertex cover problem. For example,
in wireless networks, vertex partitioning algorithms have been utilized to cluster “interfering nodes” together
for better scheduling of the network to achieve higher data rates [21]. Gerber and Kobler [22] solve the vertex
partitioning problem on classes of graphs having bounded clique-width, and in [23] the authors introduce
the satisfactory partitioning problem. A survey of results and complexities of the variants of the satisfactory
partitioning problem is prepared by Bazgan et al. [24]. In addition, finding optimal bramble sets may yield
insights in understanding the structure of optimal tree decompositions.

A more well known and active area of research addresses the problem of finding a (simple, undirected)
graph’s bramble number, given Seymour and Thomas’ result that brambles provide a lower bound on
the treewidth of graphs [1]. In graph-theory, identifying a graph’s treewidth is essential because of the
difficulty of problems in this area and the efficiency of algorithms utilizing tree decomposition. For fixed
treewidths, tree decomposition has been shown to produce polynomial-time algorithms for a number of NP-
complete problems modeled on graphs [25–28]. In addition to its theoretical importance with respect to graph
structure, tree decomposition is an important tool in computational and theoretical complexity. Practical
algorithms utilizing tree decompositions have also been developed by Lauritzen and Spiegelhalter [29] and
Koster et al. [30] (see also Röhrig [31]). The notions of treewidth and tree decomposition were introduced
by Robertson and Seymour [32] as part of a series of papers proving Wagner’s conjecture (also known
as the Graph Minors Theorem). However, the problem of finding the treewidth itself is shown to be NP-
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