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a b s t r a c t

We describe a general method for deriving new inequalities for integer programming
formulations of combinatorial optimization problems. The inequalities, motivated by local
search algorithms, are valid for all optimal solutions but not necessarily for all feasible
solutions. These local search inequalities can help in either pruning the search tree at some
nodes or in improving the bound of the LP relaxations.
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1. Optimization and local search

One of the most effective ways to solve an NP-hard combinatorial optimization problem is to formulate it as an integer
program, which is in turn solved by branch and bound [1]. Let the formulation be

zIP := min{c x : x ∈ S} (1)
where S = {x : A x ≥ b, x ≥ 0, x ∈ Zn

}. Moreover, let P = {x : A x ≥ b, x ≥ 0} and P I
= conv(S).

Valid inequalities (also called cuts) can be added to (1) to strengthen the quality of the LP bound to be used in the branch-
and-bound. The process of solving a combinatorial optimization problem with the addition of valid cuts is called branch-
and-cut [2].

Local search is a general framework for finding good (not necessarily optimal) solutions of an optimization problem [3,4].
In local search, a neighborhood function N (s) is specified, which, for a feasible solution s, defines a set of feasible solutions
‘‘close’’ to s. A local optimum is a solution s∗ such that c s∗ ≤ c s for all s ∈ N (s∗). Clearly, an optimal solution of the problem
is also a local optimum for each possible neighborhood but not vice-versa. Local search heuristics usually work by quickly
finding as many local optima as possible, and then returning the best one.

The results presented in this paper are based on the following observation:
Given a local search neighborhoodN , a global optimum of the problemmust also be a local optimum for N . This is therefore
an additional constraint on the global optimum.

If it is possible to express the above constraint via linear inequalities, we call each such linear constraint a local search
inequality (LSI). Basically, local search inequalities are constraints saying that, for each move which changes a feasible
solution x into a feasible solution x′

∈ N (x), it must be c x′
≥ c x. These constraints are valid for local optima (and hence for

global optima), but may be violated by some other feasible solutions in P I . Therefore, they cut through the set P I and are not
valid inequalities in the usual sense.

We mention that the idea of using inequalities that are not valid for all feasible solutions but only for some subsets of
solutions can be also found in other settings. As examples of such inequalities, we cite the logic cuts which can be found in
[5,6] and the conditional inequalities appearing in [7].
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Fig. 1. A feasible set with two neighborhood functions N 1 (a) and N 2 (b). In (a) neighbor points are obtained by moving vertically or horizontally; in (b)
by moving diagonally. The objective function is max x1 + x2 and the local optima are the black dots. PN1 is shown in (c) and PN2 is shown in (d). PN1 ∩ PN2

is shown in (e) which has only two local optima points, one of which is the global optimum.

Given a neighborhood function N , let X(N ) be the set of incidence vectors of all local optima for N , and let PN
=

conv(X(N )). Then, a LSI is nothing but a valid inequality for PN . The polytope PN is contained in P I , and if k distinct neigh-
borhood functions are considered, the optimal solutions in P I are contained in PN1 ∩ PN2 ∩ · · · ∩ PNk . In Figs. 1(a) and (b) a
feasible set is shown with two neighborhood functions N 1 and N 2. The neighborhood functions are schematically shown
at the left of the figures (in the first case neighbor points are obtained moving vertically or horizontally; in the second case
moving diagonally). If the objective function is max x1 + x2 then the local optima are the black dots. In Figs. 1(c) and (d)
we can see PN1 and PN2 . In Fig. 1(e) we see PN1 ∩ PN2 which has only two local optima points, one of which is the global
optimum.

From our computational experiments, we have noticed that X(N1) ∩ X(N2) ∩ · · · ∩ X(Nk) is typically much smaller
than S, even for k = 2, 3. For example, consider the problem of finding the optimal TSP tour over the first 13 nodes of the
TSPLIB instance fri26. We computed the local optima for three simple neighborhood functions defined by the moves that
exchange two consecutive cities along the tour (N1), exchange any two cities along the tour (N2) and remove two edges from
the tour and reconnect the two resulting paths (N3). Then, among the 239,500,800 tours, there are 432,507 local optima for
N1, 7,293 local optima for N2 and 3 local optima for N3. Moreover, X(N1) ∩ X(N2) ∩ X(N3) has just 2 elements, and they
are both global optima.

Local search inequalities are, by their nature, very general, since they apply whenever a local optimality condition can be
expressed by linear inequalities. In this paper,wewill focus on the Traveling Salesman (TSP), on theMaximumCut (Max-Cut)
and on the Maximum Satisfiability problems (Max-SAT).

In a sense, LSIs are ‘‘formulation-independent’’, i.e., they can be added to any formulation whose variables include the
variables appearing in the LSIs. For instance, there are several distinct formulations for the TSP which have, among their
variables, binary variables xij associated to the edges of the graph (see [8]). Then, if we have a set of LSIs involving only the
edge variables, they could be added to any of these formulations.

Another nice property of LSIs is that, as long as the neighborhood function is relatively simple (such as exchanging the
order of two elements in a permutation), the number of corresponding inequalities is fairly small, and LSIs can be directly
added to the formulation without the need of a separation algorithm. We will see examples of this type later on. On the
other hand, for more complex neighborhood functions, it may be the case that there is an exponential number of LSIs, but
still they can be dealt with in polynomial time via a separation algorithm. We will see examples of this type as well.

The remainder of the paper is organized as follows. In Section 2 we describe two neighborhoods for the Symmetric
TSP and some corresponding LSIs. In Section 3 and Section 4 we describe LSIs for the Max-Cut and the Max-SAT prob-
lems, respectively. In Section 5 we report the results of some computational experiments. Some conclusions are drawn in
Section 6.

Notation. We will adopt the following notation. For a graph G = (V , E) and a set of nodes S ⊂ V , we denote by δ(S) the set
of edges with one endpoint in S and the other in V \ S. With a slight abuse of notation, we write δ(v) instead of δ({v}) when
|S| = 1. By N(v) we denote the set of neighbors of v ∈ V , i.e. N(v) := {u : uv ∈ E}. If x are variables of a linear program
with indices in a set I , and J ⊆ I , by x(J) we denote the sum


i∈J xi.
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