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a b s t r a c t

Let (L; ⊓, ⊔) be a finite lattice and let n be a positive integer. A function f : Ln → R is said
to be submodular if f (a ⊓ b) + f (a ⊔ b) ≤ f (a) + f (b) for all a, b ∈ Ln. In this article we
study submodular functionswhen L is a diamond. Given oracle access to f we are interested
in finding x ∈ Ln such that f (x) = miny∈Ln f (y) as efficiently as possible. We establish

• a min–max theorem, which states that the minimum of the submodular function is
equal to the maximum of a certain function defined over a certain polyhedron; and

• a good characterisation of the minimisation problem, i.e., we show that given an oracle
for computing a submodular f : Ln → Z and an integer m such that minx∈Ln f (x) =

m, there is a proof of this fact which can be verified in time polynomial in n and
maxt∈Ln log |f (t)|; and

• a pseudopolynomial-time algorithm for the minimisation problem, i.e., given an oracle
for computing a submodular f : Ln → Z one can find mint∈Ln f (t) in time bounded by
a polynomial in n and maxt∈Ln |f (t)|.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let V be a finite set and let f be a function from 2V to R. The function f is said to be submodular if f (A ∪ B) + f (A ∩ B) ≤

f (A) + f (B) for all A, B ⊆ V . In the sequel we will call such functions submodular set functions. Submodular set functions
show up in various fields including combinatorial optimisation, graph theory [1], game theory [2], information theory [3]
and statistical physics [4]. Examples include the cut function of graphs and the rank function of matroids. There is also a
connection between submodular function minimisation and convex optimisation. In particular, submodularity can be seen
as a discrete analogue of convexity [5,6]. We refer the reader to [7–9] for a general background on submodular set functions.

Given a submodular set function f : 2V
→ R there are several algorithms for finding minimisers of f , i.e., finding a

subset X ⊆ V such that f (X) = minY⊆V f (Y ), in time polynomial in |V |. The first algorithm for finding such minimisers
in polynomial time is due to Grötschel et al. [10]. However, this algorithm is based on the Ellipsoid algorithm and hence
its usefulness in practice is limited. Almost two decades later two combinatorial algorithms were found independently by
Schrijver [11] and Iwata et al. [12]. More recently the running times have been improved. The currently fastest strongly
polynomial time algorithm is due to Orlin [13] and the fastest weakly polynomial time algorithm is due to Iwata [14]. In
these algorithms the submodular set function is given by a value-giving oracle for f (i.e., presented with a subset X ⊆ V the
oracle computes f (X)).

In this article we investigate a more general notion of submodularity. Recall that a lattice is a partially ordered set in
which each pair of elements has a least upper bound (join, ⊔) and a greatest lower bound (meet, ⊓). Given a finite lattice
L (all lattices in this article are finite) and a positive integer n we can construct the product lattice Ln. Meet and join
for Ln are then defined coordinate-wise by meet and join in L. We say that a function h : Ln

→ R is submodular if
h(a ⊓ b) + h(a ⊔ b) ≤ h(a) + h(b) for all a, b ∈ Ln. Note that the subsets of V can be seen as a lattice with union
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Fig. 1. The five element diamond.

as join and intersection as meet (this lattice is a product of the two element lattice). Hence, this notion of submodularity
is a generalisation of submodular set functions. For a fixed finite lattice L we are interested in the submodular function
minimisation (SFM) problem:
Instance: An integer n ≥ 1 and a submodular function f on Ln.
Goal: Find x ∈ Ln such that f (x) = miny∈Ln f (y).

Following [15] we denote this problem by SFM(L). SFM(L) is said to be oracle-tractable if the problem can be solved
in time polynomial in n (provided that we have access to a value-giving oracle for f and that we can assume that f is
submodular, i.e., it is a promise problem). This definitionnaturally leads to the followingquestion: is SFM(L)oracle-tractable
for all finite lattices L? (This question was, as far as we know, first asked by Cohen et al. [16].)

Schrijver [11] showed that given a sublattice S of 2V (i.e., S ⊆ 2V and for any X, Y ∈ S we have X ∩ Y , X ∪ Y ∈ S) and
submodular function f : S → R aminimiser of f can be found in time polynomial in n. In particular, this implies that for any
distributive lattice L the problem SFM(L) is oracle-tractable. Krokhin and Larose [15] showed that certain constructions
on lattices preserve oracle-tractability of SFM. In particular, they showed that if X is a class of lattices such that SFM(L) is
oracle-tractable for every L ∈ X , then so is SFM(L′) where L′ is a homomorphic image of some lattice in X , a direct product
of some lattices in X , or contained in the Mal’tsev product X ◦ X . We will not define these constructions here and refer the
reader to [15] instead.

A lattice L is a diamond if the elements of the lattice form a disjoint union of the bottom element 0L, the top element 1L,
and a finite set A, |A| ≥ 3 whose elements are pairwise incomparable. The elements in A are the atoms of the diamond. See
Fig. 1 for a diagram of the five element diamond. We want to emphasise that diamonds have a different structure compared
to the lattices defined by union and intersection. In particular, diamonds are not distributive, that is they do not satisfy
x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z) for all x, y, z ∈ L. We will denote the diamond with k atoms by Mk. In Sections 4, 6 and 7 the
complexity of SFM(Mk) is investigated. The reason for investigating the complexity of SFM on diamonds and not some other
lattice, is that diamonds are (arguably) the simplest lattice that we do not have any complexity results for. In the approach
taken in this article the difficult case is k = 3—the proofs for the k = 3 case generalise straightforwardly to an arbitrary k.
We note that none of the diamonds are captured by the combination of the results found in [15,11] (a proof of this fact can
be found in [15]).
Results and techniques. The firstmain result in this article is amin–max theorem for SFM(Mk)which is stated as Theorem4.3.
This result looks quite similar to Edmonds’min–max theorem for submodular set functions [17] (we present Edmonds’ result
in Section 2). The key step in the proof of this result is the definition of a certain polyhedron, which depends on f .

The second main result is a good characterisation of SFM(Mk) (Theorem 6.6). That is, we prove that given a submodular
f : Mn

k → Z and integer m such that minx∈Ln f (x) = m, there is a proof of this fact which can be verified in time
polynomial in n and maxy∈Ln log |f (y)| (under the assumption that f is submodular). This can be seen as placing SFM(Mk)
in the appropriately modified variant of NP ∩ coNP (the differences from our setting to an ordinary optimisation problem
is that we are given oracle access to the function to be minimised and we assume that the given function is submodular).
The proof of this result makes use of Carathéodory’s theorem and of the known polynomial-time algorithms for minimising
submodular set functions. We also need our min–max theorem.

The third result is a pseudopolynomial-time algorithm for SFM(Mk) (see Section 7). We show that SFM(Mk) can be
solved in time polynomial in n and maxt∈Mn

k
|f (t)|. The main part of the algorithm consists of a nested application of

the Ellipsoid algorithm. We also need to prove that the polyhedrons we associate with submodular functions are half-
integral. An interesting and challenging open problem is to construct an algorithm with a running time polynomial in n
and maxt∈Mn

k
log |f (t)|.

Our results apply to diamonds, however, as mentioned above, in [15] two constructions on lattices (Mal’tsev products
and homomorphic images) are shown to preserve tractability results for SFM. By combining these constructions with the
results in this article one gets tractability results for a much larger class of lattices than just diamonds.1 In particular, by the
results in this article there is a pseudopolynomial-time algorithm forminimising submodular functions over products of the
lattice in Fig. 2.

1 In [15] these constructions are shown to preserve oracle-tractability and not solvability in pseudopolynomial time. However, it is straightforward to
adapt the proofs to the pseudopolynomial case.
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