Discrete Optimization 17 (2015) 14-24

Contents lists available at ScienceDirect 2 DISCRETE
OPTIMIZATION
Discrete Optimization
journal homepage: www.elsevier.com/locate/disopt:
Scheduling on uniform processors with at most one @CmssMark
downtime on each machine
Liliana Grigoriu®*, Donald K. Friesen”
2 Department of Control and Computers, Politehnica University Bucharest, Splaiul Independentei 313, Bucharest, 060042, Romania
b Department of Computer Science, Texas A&M University, College Station, TX, 77843-3112, USA
ARTICLE INFO ABSTRACT
Article history: We consider the problem of scheduling a given set of tasks on uniform processors with
Received 21 February 2012 predefined periods of unavailability, with the aim of minimizing the maximum comple-
Received in revised form 18 August 2014 tion time.

Accepted 30 October 2014

Available online 13 April 2015 We give a simple polynomial MULTIFIT-based algorithm, the schedules of which fin-

ish within 1.5 times the maximum between the latest end of a downtime and the end of
the optimal schedule, when there is at most one downtime on each machine. Even when
Multiprocessor scheduling all processors have the same processing speed, it is NP-hard to obtain schedules that obey
Uniform processors better bounds for this problem.

MULTIFIT © 2015 Published by Elsevier B.V.
Fixed jobs

Worst-case bounds

Makespan

Keywords:

1. Introduction

Nonpreemptive scheduling of a set of tasks on multiple resources is a widely encountered problem. The jobs are usually
assumed to be given as an integer number of suitably chosen units such as the time needed by a clock cycle on the slowest
processor, in order to characterize the time needed to process them.

The multiprocessor scheduling problem, which asks whether it is possible to nonpreemptively schedule a set of indepen-
dent tasks on m same-speed processors to meet a given deadline (with m considered to be an input parameter) is strongly
NP-hard [1]. Therefore, the study of this problem and its generalizations has mainly been concentrating on approximation
algorithms: the largest processing time first (LPT) algorithm was first proposed in [2] and shown to have a makespan within
4/3—1/(3m) times the optimal makespan, and later the MULTIFIT algorithm was considered [3], and was shown to generate
schedules which end within 13/11 times the optimal makespan in [4]. A review on deterministic scheduling was given by
Chen, Potts, and Woeginger in [5].

Due to maintenance or failures, machines might exhibit periods of unavailability. Reviews focusing on scheduling with
availability constraints were given by Lee, Lei, and Pinedo in [6] and by Sanlaville and Schmidt in [7].

We focus on the static variant of the problem, when downtimes are known in advance. A dynamic variant can also be
conceived, when downtimes can occur unexpectedly.

A special case for scheduling on multiple processors in the presence of machine downtimes is the case when all down-
times are at the beginning of the schedule, that is, when the processors start processing at different times. For same-speed

* Corresponding author.
E-mail addresses: liliana.grigoriu@cs.pub.ro (L. Grigoriu), friesen@cs.tamu.edu (D.K. Friesen).

http://dx.doi.org/10.1016/j.disopt.2014.10.001
1572-5286/© 2015 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.disopt.2014.10.001
http://www.elsevier.com/locate/disopt
http://www.elsevier.com/locate/disopt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disopt.2014.10.001&domain=pdf
mailto:liliana.grigoriu@cs.pub.ro
mailto:friesen@cs.tamu.edu
http://dx.doi.org/10.1016/j.disopt.2014.10.001

L. Grigoriu, D.K. Friesen / Discrete Optimization 17 (2015) 14-24 15

processors, Lee [8] and Chang and Hwang [9] give worst-case analyses of the multiprocessor scheduling problem for schedul-
ing on parallel machines that do not start simultaneously, when using LPT and MULTIFIT respectively.

Given that all downtimes could be infinite, the strong NP-hardness of multiprocessor scheduling results in the NP-
hardness of the problem of finding an approximation algorithm that ends within a multiple of the time needed by the
optimal schedule, unless assumptions about the downtimes are made.

For the case when there is at most one downtime on each machine, the authors in [10] make the assumption that no
more than half the machines are unavailable at any time. They show that for this situation the LPT algorithm ends within
twice the time needed by the optimal schedule when all processors have the same speed. In [11], the result is generalized
to the case when an arbitrary number of machines, A € {1, .., m — 1}, may be unavailable at the same time. In that case
the makespan generated by the LPT schedule is not worse than the tight worst-case bound of 1 + % [m/(m — A)] times the
optimal makespan.

In [12] Scharbrodt et al. consider the problem of scheduling on multiple same-speed processors with “fixed” jobs, which
are jobs that have to be executed at certain predefined times, in order to minimize the makespan of the schedule of all jobs.
In their setting, the number of processors is not considered a part of the input, and there can be more than one fixed job on
one machine. They give a polynomial-time approximation scheme for this problem, and then a generalization thereof for
the uniform processor case. They also show that no polynomial-time approximation scheme exists for the case where the
number of machines is not constant, and that no fully polynomial time approximation scheme exists for the case where the
number of machines is constant.

Scheduling on same-speed processors with at most one downtime on each machine was considered in [13], where an LPT-
based algorithm which finishes within 3/2 times the optimal (smallest possible) maximum completion time (of a schedule)
or 3/2 times the latest end of a downtime was given. There it is also shown that it is NP-hard to obtain a better bound, which
follows from a proof presented in [12], which was made for the case when there may be multiple fixed jobs on one machine.

In this paper we consider scheduling on uniform processors with at most one downtime on each machine. Scheduling
on uniform processors has also been studied in the past. In [14], the authors show that for nonpreemptive scheduling a
variant of MULTIFIT finishes within 1.4 times the optimal maximum completion time. This bound was improved to 1.382
in [15]. In [16], a polynomial-time approximation scheme for scheduling on uniform processors is given. For two uniform
processors, the authors of [17] derive a tight worst-case bound of +/6 /2 + (1/2)* for scheduling using MULTIFIT with k calls
of the first fit decreasing (FFD) algorithm within MULTIFIT. When MULTIFIT is combined with LPT as an incumbent algorithm,
they show that the worst case bound decreases to (ﬁ +1)/2 + (1/2)%.

In [18], the performance of LPT for scheduling on uniform processors with nonsimultaneous machine available times is
studied, and it is shown that LPT finishes within 5/3 times the optimal maximum completion time, and that the bound is
better when there are only 2 machines or when the speed ratio is small. The paper also presents a polynomial algorithm
that finishes within 6/5 times the optimal maximum completion time if there are only 2 processors in the system.

In this work, we consider the more general case where each machine may have a downtime which does not necessarily
start at the beginning of the scheduling period. Such a situation may occur when multiple uniform machines become
available for processing at the same time, for example at the start of the work day, when one maintenance activity must be
performed for each machine at a predefined time during the scheduling period, i.e., the day, while the purpose is to finish
as soon as possible. We give a simple polynomial MULTIFIT-based algorithm which finishes within 3/2 times the optimal
schedule’s maximum completion time or 3/2 times the latest end of a downtime. This result does not depend on how big
or small the ratios between the speeds of the different processors are or on the number of processors in the system. This
implies that, when our algorithm’s schedule finishes after 3/2 times the latest end of a downtime, or when the downtimes
represent fixed jobs, it also finishes within 3/2 times the optimal maximum completion time. Also, if the optimal schedule
ends after the latest end of downtime, for example if the total available time for processing before the latest end of downtime
is not enough to process all tasks, then our algorithm’s schedule finishes within 3/2 times the maximum completion time
of the optimal schedule.

The classic MULTIFIT algorithm first assigns upper and lower bounds for the maximum completion time of the schedule.
Then, it uses binary search while assigning schedule deadlines to find new upper and lower bounds for the maximum
completion time of the schedule. Once a deadline is assigned, MULTIFIT uses the first fit decreasing (FFD) algorithm to assign
tasks to the time slots formed between the start of the schedule and the deadline. Given an ordered list of time slots and a set
of tasks, the FFD algorithm orders the tasks in nonincreasing order of their processing time on the slowest processor and then
assigns each task to the first time slot encountered in which it fits. If a feasible schedule is found the deadline is decreased,
and otherwise it is increased, until a desired accuracy is achieved. Within the MULTIFIT loop, our algorithm uses the following
scheduling policy. It orders the time slots formed between the start of the schedule and the downtimes, and those which
start at the end of a downtime and end at the MULTIFIT assigned deadline in nondecreasing order of their duration multiplied
by the speed factor of the processor they are on. Then it assigns tasks to time slots using the FFD algorithm. The 3/2 bound
achieved by our MULTIFIT variant is the best that can be achieved by a polynomial algorithm assuming that P # NP.

Unlike in [10], we do not have any restriction on the times when the machines shut down. The problem in [12] is similar
to our problem in that the machine downtimes are equivalent to the fixed jobs. The difference is that they can have more
than one fixed job on a machine, and that the maximum completion time of the optimal schedule with fixed jobs cannot be
less than the maximum completion time of a fixed job, which corresponds to the latest end of a downtime in our setting.

Download English Version:

https://daneshyari.com/en/article/1141659

Download Persian Version:

https://daneshyari.com/article/1141659

Daneshyari.com

https://daneshyari.com/en/article/1141659
https://daneshyari.com/article/1141659
https://daneshyari.com

