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a b s t r a c t

Given a combinatorial optimization problem and a subset N of nonnegative integer
numbers, we obtain a cardinality constrained version of this problem by permitting only
those feasible solutions whose cardinalities are elements of N . In this paper we briefly
touch on questions that address common grounds and differences of the complexity of a
combinatorial optimization problemand its cardinality constrained version. Afterwardswe
focus on the polyhedral aspects of the cardinality constrained combinatorial optimization
problems. Maurras (1977) [5] introduced a class of inequalities, called forbidden cardinality
inequalities in this paper, that can be added to a given integer programming formulation for
a combinatorial optimization problem to obtain one for the cardinality restricted versions
of this problem. Since the forbidden cardinality inequalities in their original form are
mostly not facet defining for the associated polyhedron, we discuss some possibilities
to strengthen them, based on the experiments made in Kaibel and Stephan (2007) and
Maurras and Stephan (2009) [2,3].
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1. Introduction

Given a combinatorial optimization problem and a finite subset N of the nonnegative integer numbers Z+, we obtain a
cardinality constrained version of this problem by permitting only those feasible solutions whose cardinalities are elements
of N .
Well-known examples of cardinality constrained combinatorial optimization problems are the traveling salesman

problem and the minimum odd cycle problem. Both problems are for themselves combinatorial optimization problems,
but in the line of sight of the minimum cycle problem, they are cardinality restricted version of the latter problem.
More formally, let E be a finite set, I a subset of the power set 2E of E, andw : E → R, e 7→ w(e) a weight function. For

any F ⊆ E and any y ∈ RE , we set y(F) :=
∑
e∈F ye. The mathematical program

max{w(F) : F ∈ I}

is called a combinatorial optimization problem (COP). We also refer to it as the triple Π = (E, I, w). The elements of I are
called feasible solutions. By permitting only those feasible solutions whose cardinalities belong to a given finite set N ⊂ Z+,
we obtain a cardinality constrained version ΠN = (E, I, w,N) of Π . The resulting problem is also called a cardinality
constrained combinatorial optimization problem (CCCOP). Here, the cardinality of any finite set M , denoted by |M|, is the
number of its elements. The cardinality constrained versionΠN ofΠ can be expressed as the mathematical program

max{w(F) : F ∈ I, |F | ∈ N}.

We note thatΠN is, considered for itself, again a COP.
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Throughout this paper,N will be represented by a so-called cardinality sequence, which is a sequence c = (c1, c2, . . . , cm)
of integers such that N = {c1, . . . , cm} and 0 ≤ c1 < c2 < · · · cm ≤ |E|. Moreover,ΠN will be identified withΠc . The set of
feasible solutions with respect to Πc will also be denoted by Ic , that is, Ic := {I ∈ I : |I| = cp for some p}. If c = (k) for
some k ∈ Z+, we speak of a k-COP and writeΠk instead ofΠ(k) provided that it is clear from the context that c refers to a
sequence and k to an integer. An overview on k-COPs is given by Bruglieri et al. [1].
This paper focuses on polyhedral aspects of cardinality constrained combinatorial optimization problems, but also briefly

addresses complexity issues.
Many combinatorial optimization problems are polyhedrally well studied. Given a COP Π = (E, I, w), the polyhedral

investigation usually refers to the associated polytope PI(E) defined as the convex hull of the incidence vectors χ I of the
feasible solutions I ∈ I. In this paper, we study the polytope

PcI(E) := conv{χ
I
∈ RE : I ∈ Ic},

that is, the convex hull of the incidence vectors of feasible solutions with respect to Πc . Since Ic ⊆ I, it follows that
PcI(E) ⊆ PI(E). Thus, any valid inequality for PI(E) is also valid for P

c
I(E). It stands to reason that many facet defining

inequalities for PI(E) are also facet defining or at least strong inequalities for PcI(E) (see, for instance, [2,3]). In this paper,
however, we are more interested in strong valid inequalities that cut off solutions that are feasible forΠ but forbidden for
Πc .
To the best of our knowledge, such inequalities, we are interested in, have been first introduced by Jeroslow [4] and

Maurras [5] in the 1970’s (see also [6]). In [4], it has been shown that (the convex hull of) all vertices of the unit hypercube
H ⊆ Rn of even size (that is, with an even number of ones) are determined by the inequalities

0 ≤ xi ≤ 1 for all i ∈ [n],∑
i∈S

xi −
∑
i∈[n]\S

xi ≤ |S| − 1 for all S ⊆ [n], |S| odd,

where [n] := {1, 2, . . . , n}. A generalization of this result can be found in [6,5]. Given a cardinality sequence c =
(c1, c2, . . . , cm), a complete linear description of the polytope Hc defined as the convex hull of all vertices of H of size cp
for some p ∈ {1, 2, . . . ,m} is as follows:

0 ≤ xi ≤ 1 for all i ∈ [n], (1)

c1 ≤
∑
i∈[n]

xi ≤ cm, (2)

(cp+1 − |S|)
∑
i∈S

xi − (|S| − cp)
∑
i∈[n]\S

xi ≤ cp(cp+1 − |S|)

for all S ⊆ [n]with cp < |S| < cp+1, p = 1, 2, . . . ,m− 1. (3)
We shall call inequalities (1) trivial inequalities, inequalities (2) cardinality bounds, and inequalities (3) forbidden

cardinality inequalities. We note that the result for Hc has been rediscovered by Grötschel [7] in form of a linear description
of cardinality homogeneous set systems, see Section 3.
Identifying Rn with RE , the linear description of Hc can be Incorporated in any integer programming formulation for a

COPΠ = (E, I, w) to obtain one for its cardinality constrained version. However, as it turns out, the resulting formulations
can be become very weak. Nevertheless, recently it have been proposed strong integer programming formulations for
cardinality constrained path and cycle problems defined on directed or undirected graphs (see [2]) and a linear program
for the cardinality constrained version of the maximum independent set problem defined on matroids (see [3]). These
formulations have been obtained by modifying inequalities (3).
Motivated by the results in [2,3], the general goal of this paper is to identify those features of cardinality constrained com-

binatorial optimization problems that, expressed in form of linear inequalities, result into strong integer programming for-
mulations. Since this question is quite difficult to handle in general, wemainly analyze cardinality constrained independence
systems and in particular matroids, and show how the resulting polyhedral insights can be transferred to other problems.
The paper is organized as follows. Before turning to polyhedral aspects of CCCOPs inmore detail, we address, in Section 2,

some complexity issues concerning the relation between the complexity of a COP and its cardinality constrained version.
In Section 3, we first give two examples indicating that inequalities (3) might be quite weak, that is, that they define low-
dimensional faces of the polyhedron considered. Next, we give three recommendations to strengthen them. As a result of
one of these recommendations, we derive in Section 4 a class of facet defining inequalities for a cardinality constrained
version of the cut polytope defined on a complete graph. In Section 5, we briefly touch the problem to derive a complete
linear description of the polyhedra associated withΠc provided we know a complete linear description of the polyhedron
associated withΠ .

2. Complexity issues

In this section, we briefly touch the question under which conditions a COPΠ and its cardinality constrained versionΠc
belong to the same complexity class. The aim of this discussion is not to give a concluding answer to this question, but to
mark the challenges to answer this question if we do not study a specific COP.
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