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a b s t r a c t

This paper considers the online scheduling problem with machine cost. We are given a
sequence of independent jobs with positive sizes. Jobs come one by one and it is required
to schedule jobs irrevocably to amachine as soon as they are given, without any knowledge
about jobs that follow later on. No machines are initially provided. When a job is revealed,
the algorithm has the option to purchase new machines. The objective is to minimize the
sumof themakespan and cost of purchasedmachines.Weprove that

√
2 is a lower boundof

the problem, which significantly improves the previous one of 4/3. We also present a new
algorithm with competitive ratio (2+

√
7)/3 ≈ 1.5486, which improves the current best

algorithmwith competitive ratio (2
√
6+3)/5 ≈ 1.5798.Moreover,we prove that applying

only the lower bounds on the optimumobjective value introduced before, no algorithm can
be proven to have a competitive ratio less than 3/2.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers an online scheduling problem with machine cost, which was first studied in [1]. We are given a
sequence of independent jobs J1, J2, . . . , Jn with positive sizes. Jobs come one by one and it is required to schedule jobs
irrevocably to a machine as soon as they are given, without any knowledge about jobs that follow later on. Jobs are available
at times zero, and no preemption is allowed. Unlike classical online parallel machine scheduling [2–5], no machines are
initially provided. When a job is revealed, the algorithm has the option to purchase newmachines. The cost of purchasing a
machine is a fixed constant. The objective is to minimize the sum of the makespan and cost of purchased machines.
The quality of an online algorithm H is measured by its competitive ratio. For any sequence I of jobs, let CH(I) denote

the corresponding objective value of a schedule produced by H , and C∗(I) denote the optimal objective value. Then the
competitive ratio of H is defined as the smallest number t such that CH(I) ≤ tC∗(I) for all sequences. An algorithm with a
competitive ratio at most t is called a t-competitive algorithm. An online scheduling problem has a lower bound ρ if no online
algorithm has a competitive ratio smaller than ρ.
In [1], Imreh and Noga proved that 4/3 is a lower bound for the problem. They also designed an online algorithm Aρ with

competitive ratio (1+
√
5)/2 ≈ 1.618. An improved algorithmwith competitive ratio (2

√
6+ 3)/5 ≈ 1.5798 is presented

by Dósa and He [6]. Some variants of the problem have been studied in [7–9]. In [10], Imreh considered a more general
model, where the cost of purchased machines is described by a non-decreasing function.
In this paper, we give improved lower and upper bounds for the scheduling problemwith fixedmachine cost 1.We prove

that
√
2−ε is a lower bound of the problem,where ε can be an arbitrarily small positive number. To the authors’ knowledge,

it is the first improvement on the lower bound over the past ten years. Then we present a more sophisticated algorithm,
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Fig. 1. Sequence used for proving Theorem 2.1 (N is an odd number). Left: Schedule produced by an online algorithm. Right: A better schedule.

which uses new machine purchasing strategies, and the competitive ratio is (2 +
√
7)/3 ≈ 1.5486. It improves the best

known upper bound, and the idea of the algorithm may be used to related problems as well.
The improvement may seem small. However, we prove that applying only the lower bounds on the optimum objective

value introduced in [1] and used in the previous papers, no online algorithm can be proven to have a competitive ratio less
than 3/2. This result strictly limits the performance of online algorithms that can be achieved using known technique. Note
that the competitive ratio of our algorithm is only 0.05 larger. It seems that the performance of online algorithms can hardly
be further improved unless new lower bounds on the optimum objective value can be found. Albers [4] gave similar results
for classical online parallel machine scheduling. Applying only three lower bounds on the optimal makespan ever used, no
online algorithm can be proven to have a competitive ratio less than 1.916, which is 0.04 smaller than the competitive ratio
of the best known online algorithm [3].
The result of the paper is organized as follows. In Section 2 we present the new lower bounds. In Section 3 we give the

description of the algorithm and some preliminary results. The competitive ratio of the algorithm is proved in Section 4.

2. Lower bounds

Theorem 2.1. Any deterministic online algorithm has a competitive ratio of at least
√
2.

Proof. We use the adversary method to get a new lower bound arbitrarily close to
√
2. Let ε be an arbitrarily small positive

number. Let q be a rational number such that
√
2 − ε

2 ≤ q <
√
2, and N be a sufficiently big integer such that qN > 4/ε

and qN is an even number.
The sequence of jobs consists of atmost qN2+1 jobs (Fig. 1). All the jobs, except the last one, are divided intoN successive

batches. Each batch has qN jobs with the same size. The size of jobs in the ith batch is iN , i = 1, . . . ,N . We will prove that
in order to be (

√
2− ε)-competitive, any algorithm A assigns each job to a new machine.

On the contrary, suppose the kth job in the jth batch is the first job that is assigned to an existingmachine, k = 1, . . . , qN ,
j = 1, . . . ,N . Then the sequence stops. The makespan of the current schedule is at least N + jN , the number of purchased
machines is (j − 1)qN + k − 1. Hence, CA ≥ (j− 1) qN + k − 1 + (j+ 1)N . In a better schedule, each job in the lth batch
shares onemachine with one job in the (j− l)th batch, l = 1, . . . ,

⌊ j−1
2

⌋
. Two jobs in the j2 th batch share onemachine when

j is an even number. Each job in the jth batch occupies one machine. The load on each of the (j − 1) qN2 + kmachines is jN .
Hence, the objective value of above schedule is (j− 1) qN2 + k+ jN . It follows that

CA

C∗
≥
(j− 1) qN + k− 1+ (j+ 1)N

(j− 1) qN2 + k+ jN
≥
(j− 1) qN + qN − 1+ (j+ 1)N

(j− 1) qN2 + qN + jN

=
jq+ (j+ 1)
j+1
2 q+ j

−
1( j+1

2 q+ j
)
N
>
jq+ (j+ 1) q

2

2

j+ (j+ 1) q2
−

1
(q+ 1)N

= q−
1

(q+ 1)N
> q−

ε

2
≥
√
2− ε,

where the second inequality is due to k ≤ qN , the third inequality is due to q <
√
2 and j ≥ 1, and the second last inequality

is due to qN > 4
ε
.
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