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a b s t r a c t

Let Tg be a gradient-constrained minimum network, that is, a minimum length network
spanning a given point set in 3-dimensional space with edges that are constrained to have
gradients no more than an upper bound m. Such networks occur in underground mines
where the slope of the declines (tunnels) cannot be too steep due to haulage constraints.
Typically the gradient is less than 1/7. By defining a new metric, the gradient metric, the
problem of finding Tg can be approached as an unconstrained problem where embedded
edges can be considered as straight but measured according to their gradients. All edges
in Tg are labelled by their gradients, being<m, = m or>m, in the gradient metric space.
Computing Steiner points plays a central role in constructing locally minimum networks,
where the topology is fixed. A degree-3 Steiner point is labelled minimal if the total length
of the three adjacent edges is minimized for a given labelling. In this paper we derive the
formulae for computing labelled minimal Steiner points. Then we develop an algorithm
for computing locally minimal Steiner points based on information from the labellings of
adjacent edges. We have tested this algorithm on uniformly distributed sets of points; our
results help in finding gradient-constrained minimum networks.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this sectionwe review some fundamental properties of Steinerminimum trees and gradient-constrained networks and
give the terminology used in this paper. In addition, the underground mine design problem, which motivated this paper,
will be briefly described.

1.1. The Steiner tree problem

Given a point set N in a metric space, the Steiner tree problem asks for a network T spanning N with minimum length.
The solution T is a tree with vertex set V ⊇ N that spans the points in N , which are called terminals. The points in V \ N are
added to shorten the network. They are called Steiner points. The graph structure of a network is referred to as its topology
and denoted by t . Further discussion of the Steiner tree problem can be found in the book by Hwang et al. [1].
In the classical Steiner tree problem, N lies in the Euclidean d-space, (d ≥ 2). In this case the following proposition holds.

Proposition 1.1. Suppose T is a minimum length network in Euclidean space, then
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(1) T has a tree topology, called a Steiner minimum tree,
(2) all edges in T are straight line segments,
(3) any angle at a Steiner point is no more than 120◦ (angle condition),
(4) the degree of a Steiner point is at most three, that is, T has a Steiner topology and is called a Steiner tree.

Where wewish to emphasize the dependence of T on N , or both N and t , the network will be denoted by T (N) or T (N, t),
respectively. Similarly, if we want to further explicitly specify the dependence of the minimal tree on the positions of the
Steiner points, the set S = {s1, s2, . . .}, then we will write T as T = T (N, t, S)where S is a third variable for the function T .
A Steiner tree T = T (N, t) is locally optimal on N if it is the shortest among all those trees having the same topology t but

where the positions of the Steiner points differ. Hence, finding a locally optimal Steiner tree is a continuous optimisation
problem. However, a Steiner minimum tree T is a globally optimal tree, that is, optimal over all Steiner topologies t as well as
over all possible positions for the Steiner points for each t . Note that the topology t is a discrete variable, hence the Steiner
tree problem, as a global optimisation problem, is both a continuous as well as discrete optimisation problem. The Euclidean
Steiner tree problem is NP-hard [1]; the number of topologies is exponential in the size of N .

Remark 1.1. The Euclidean Steiner tree problem is even harder than otherwell-known combinatorial network optimisation
problems such as the travelling salesman problem due to this hybrid optimisation. It is more difficult in higher-dimensional
Euclidean space than in the plane, as finding the locally minimum Steiner tree, even on a set of four points in Euclidean
3-space, is not algebraically solvable in general [2].

To date there are many variants on the classical Steiner tree problemwith metrics related to their different applications,
e.g. rectilinear Steiner trees and λ-trees in VLSI design [3,4], flow-dependent networks in communications [5] and Steiner
minimum trees in molecular biology [6]. In recent years, a further variant has been the problem of finding Steiner minimum
trees in 3-dimensional space in which the (absolute) gradients of all edges are no more than an upper bound m. The
application is in underground mine access design [7–10] and is described further in Section 1.2. Such networks are called
gradient-constrained minimum networks and this problem has been shown to be NP-hard [11]. In fact all of the afore-
mentioned variants have been shown to be NP-hard.

1.2. Gradient metric and gradient-constrained networks

Let xp, yp, zp denote the Cartesian coordinates of a point p in Euclidean space. By the gradient g(pq) of an edge pq we
mean the absolute value of the slope from p = (xp, yp, zp) to q = (xq, yq, zq), that is,

g(pq) def=
|zq − zp|√

(xq − xp)2 + (yq − yp)2
.

Here, | · | denotes simply the absolute value. If g(pq) ≤ m, then pq is a straight line segment joining p and q and is referred
to as straight. However, if g(pq) > m, then pq cannot be represented, or embedded in 3-dimensional Euclidean space, as a
straight line segment without violating the gradient constraint. Instead it can be represented by a zig-zag line joining p and
qwith each segment having gradientm. Such edges are referred to as bent.
Suppose o is the origin and p = (xp, yp, zp), q = (xq, yq, zq) are points in 3-space. The gradient metric can be defined in

terms of the Euclidean and vertical metrics, denoted by | · |e and | · |v respectively:

|pq|g =

{
|pq|e =

√
(xp − xq)2 + (yp − yq)2 + (zp − zq)2 if g(pq) ≤ m,

|pq|v = (
√
1+m−2)|zp − zq| if g(pq) ≥ m.

(1)

It is easy to see that the unit ball for the gradient metric looks like a drum, that is, like a ball whose North and South
poles are cut off by horizontal planes of equal distance from the ball’s centre (Fig. 1). Therefore the gradient metric, and
consequently the length function of a gradient-constrained network, is convex but not strictly convex. A convex set is strictly
convex if the relative open line segment between any two points on the boundary of the convex set lies strictly in the interior
of the convex set.
A gradient-constrained minimum network Tg = Tg(N) is a minimum length network spanning a given (finite) point set N

in 3-dimensional space with edges whose (absolute) gradients are all nomore than an upper boundm. Such networks occur
in underground mines where ore is accessed and hauled to the surface via a network of gently sloping declines (tunnels).
The declines cannot be too steep (Fig. 2) as driving up steep inclines requires more fuel and there is more wear and tear on
the trucks. The typical maximum gradient of the tunnels is about 1:7 (≈0.14) [8,9]. These networksmay bemany kilometres
long. The development costs of the declines and associated haulage costs over the life of amine are amajor part of the overall
mine costs. Saving 10 m in length of a decline results in savings of about 100,000 US dollars over the life of the mine. Hence
minimising the length of the network is key to the viability and profitability of an underground mine.
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