
Discrete Optimization 14 (2014) 78–96

Contents lists available at ScienceDirect

Discrete Optimization

journal homepage: www.elsevier.com/locate/disopt

A branch-and-cut algorithm for the capacitated profitable
tour problem
Mads Kehlet Jepsen, Bjørn Petersen, Simon Spoorendonk, David Pisinger ∗
DTU Management Engineering, Technical University of Denmark, Produktionstorvet, Building 426, 2800 Kgs., Lyngby, Denmark

a r t i c l e i n f o

Article history:
Received 17 January 2012
Received in revised form 11 July 2014
Accepted 1 August 2014
Available online 16 September 2014

Keywords:
Branch-and-cut algorithm
Valid inequalities
Profitable tour problem
Capacitated shortest path problem
Traveling salesman problem

a b s t r a c t

This paper considers the Capacitated Profitable Tour Problem (CPTP)which is a special case of
the Elementary Shortest Path Problem with Resource Constraints (ESPPRC). The CPTP belongs
to the group of problems known as traveling salesman problems with profits. In CPTP each
customer is associated with a profit and a demand and the objective is to find a capacitated
tour (rooted in a depot node) that minimizes the total travel distance minus the profit of
the visited customers. The CPTP can be recognized as the sub-problem in many column
generation applications, where it is traditionally solved through dynamic programming.
In this paper we present an alternative framework based on a formulation for the undi-
rected CPTP and solved through branch-and-cut. Valid inequalities are presented among
whichwe introduce a new family of inequalities for the CPTP denoted roundedmultistar in-
equalities and we prove their validity. Computational experiments are performed on a set
of instances known from the literature and a set of newly generated instances. The results
indicate that the presented algorithm is highly competitive with the dynamic program-
ming algorithms. In particular, we are able to solve instances with 800 nodes to optimality
where the dynamic programming algorithms cannot solve instances with more than 200
nodes. Moreover dynamic programming and branch-and-cut complement each other well,
giving us hope for solving more general problems through hybrid approaches. The paper is
intended to serve as a platform for further development of branch-and-cut algorithms for
CPTP hence also acting as a survey/tutorial.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The capacitated profitable tour problem (CPTP) can be defined on a complete undirected graph G(V , E) with nodes
V = N ∪{0}where N is a set of customers and 0 is the depot node, and E is the set of edges connecting the nodes in V . A cost
ce is associatedwith each edge e ∈ E. Also, a demand di and a profit pi are associatedwith each customer i ∈ N and a capacity
Q is given for the maximum load of tour. The objective is to find a tour rooted in the depot where the demand accumulated
at the customers does not exceed the capacity, and the total travel distance minus the profits gained by visiting customers
is minimized. The problem is a special case of the elementary shortest path problem with resource constraints (ESPPRC) since
the CPTP can be reduced to ESPPRC, by transferring the demands from the nodes onto the arcs. Notice that there is no way
to transfer resource-consumption from arcs to nodes, hence the ESPPRC cannot be reduced to the CPTP.

The CPTP is a side-constrained version of the profitable tour problem named by Dell’Amico et al. [1], a problem that
falls within the category of traveling salesman problems with profits as classified by Feillet et al. [2]. Other problems in this
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category are the orienteering problem (OP) (also knownas the selective traveling salesmanproblem) and the prize-collecting
traveling salesman problem (PCTSP). In the OP the total tour length is bounded from above, and the objective is to maximize
the profit gained by visiting customers. In the PCTSP the objective is similar to the CPTP but a minimum amount of profits
must be collected on the tour. In the context of the capacitated vehicle routing problem (CVRP) the CPTP appears as the
sub-problem in column generation methods, see e.g. Baldacci et al. [3,4]. In this context, the CPTP is often transformed to a
path problem (a path is obtained from the tour by splitting the depot into two nodes) and is denoted the elementary shortest
path problem with resource constraints [5]. The resource is given as an accumulation of demand of the visited customers
and is constrained by the capacity. However, in recent routing applications the sub-problem is complicated considerably by
the introduction of additional cuts in the column generating master problem, such as the strong capacity inequalities [4],
the subset-row inequalities [6], the Chvátal–Gomory rank-1 cuts [7], and the clique inequalities [8]. The sub-problem can no
longer be considered a CPTP. Moreover, the sub-problems are often solved as feasibility problems instead of optimization
problems which may favor other types of combinatorial algorithms than branch-and-cut algorithms.

Laporte and Martello [9] showed that the OP is N P -hard by reduction from the Hamiltonian circuit problem. Using a
similar reduction it can be shown that the CPTP also belongs to the class of N P -hard problems. If there are no cycles with
negative cost in the graph G, then the CPTP is solvable in pseudo-polynomial time using a dynamic programming algorithm.
In this particular case the CPTP relates to the constrained shortest path problem (again by transformation to a path problem).
Several algorithms based ondynamic programming exist for this problem, see e.g., Beasley andChristofides [10], Carlyle et al.
[11], Dumitrescu and Boland [12], and Muhandiramge and Boland [13].

Bixby [14], Bixby et al. [15] consider the CPTP in her Ph.D. thesis on the CVRP and present a mathematical model and a
branch-and-cut (BAC) algorithm. Letchford and Salazar-Gonzalez [16] discuss projection results for the CVRP and present
two families of multistar inequalities that are valid for the CPTP. Other work on the CPTP in a CVRP context is mainly
concerned with dynamic programming algorithms. Feillet et al. [17] present a dynamic programming algorithm where
the elementarity of the path is ensured by the use of an additional resource per node. Chabrier [18] improved on the
labeling algorithm by applying various bounding and dominance procedures to avoid the extension of unpromising paths.
Christofides et al. [19] proposed a bi-directional labeling algorithmwhere paths are extended fromboth ends of thepathuntil
half of the capacity is reached. The partial paths are then combined to construct a full path. Righini and Salani [20] generalized
this approach to other types of resources. Independently, Boland et al. [21] and Righini and Salani [22] proposed to initially
relax the node resources and add them iteratively until the path is elementary. In the former paper this is referred to as a
state space augmentation algorithm and in the latter it is denoted a decremental state space relaxation algorithm. Furthermore,
Righini and Salani [22] propose to use the result of the relaxed problem in a branch-and-bound algorithm. Fischetti et al. [23]
and Gendreau et al. [24] present BAC algorithms for the OP. They present several valid inequalities, many of which are also
valid for the CPTP. Indeed, we prove that the polytope of the CPTP can be transformed to an instance of the polytope for the
OP. However, Gendreau et al. [24] also present some inequalities related to the objective function of the OP that are not valid
for the CPTP. Bauer et al. [25] consider the cardinality constrained circuit problem (CCCP) where a minimum cost circuit of
maximal cardinality in a graph is sought. The CCCP is equivalent to the CPTP with unit demands if one node is fixed in the
CCCP (the depot node of the CPTP). Two mathematical models are presented and several valid inequalities are investigated.
Bauer et al. [25] suggest to solve the CPTP by a BAC algorithm, but to our knowledge this has not been pursued.

The contribution of this paper is the introduction of an IP model for the CPTP and a BAC algorithm for solving it.
This includes the adaption of several valid inequalities from e.g. the OP and the CCCP, the introduction of the rounded
multistar inequalities, and a proof of validity for the inequalities with regard to the CPTP. Also, we have successfully
implemented a separation heuristic for finding knapsack large multistar inequalities, that prove their usefulness for the CPTP.
The computational experiments show that the separation algorithms are able to find knapsack large multistar inequalities
in many benchmark sets, where previous authors were much less successful, and several rounded capacity and generalized
large multistar inequalities. Computational experiments on a set of instances known from the literature and a set of newly
generated instances show that the BAC algorithm is competitive with state-of-the-art dynamic programming algorithms.
In particular, the BAC algorithm is able to solve instances with 800 nodes to optimality where the dynamic programming
algorithms cannot solve instances with more than 200 nodes. In general the two algorithms appear to complement each
other well. The BAC algorithm performs best on those instances that are difficult to solve by dynamic programming, hence
the paper is intended to serve as a platform for further development of branch-and-cut algorithms for CPTP giving a
survey/tutorial of all cuts.

The paper is organized as follows: Section 2 contains an integer programming model for the CPTP, Section 3 describes
the cutting planes used in the BAC algorithm, Section 4 presents the separation results for these cutting planes, the
computational results are found in Section 5, and Section 6 concludes the work.

2. Mathematical model

Recall the definition of CPTP on a graph G(V , E). The traversal of an edge e is indicated by the binary variable xe for all
e ∈ E and a visit to node i is indicated by the binary variable yi for all i ∈ V . Some short-hand notation: for node set S we
use δ(S) to indicate the edge set consisting of the edges between S and its complement S, E(S) to indicate the edge set of
the complete sub-graph spanned by S, and E(S : T ) for T ∩ S = ∅ to indicate the edges connecting S and T . For singleton
sets we simply write i instead of {i}, e.g., δ(i) is the set of edges connected to node i.
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