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a b s t r a c t

The combinatorial optimization literature contains a multitude of polynomially solvable
special cases of the traveling salesman problem (TSP) which result from imposing certain
combinatorial restrictions on the underlying distancematrices. Many of these special cases
have the form of so-called four-point conditions: inequalities that involve the distances
between four arbitrary cities.

In this paper we classify all possible four-point conditions for the TSP with respect to
computational complexity, and we determine for each of them whether the resulting spe-
cial case of the TSP can be solved in polynomial time or whether it remains NP-hard.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The traveling salesman problem (TSP) is a classical problem of combinatorial optimization. In the TSP, one is given a n×n
distance matrix C = (cij) and looks for a cyclic permutation τ of the set {1, 2, . . . , n} that minimizes the function c(τ ) =n

i=1 ciτ(i). The value c(τ ) is called the length of the permutation τ . The items in τ are usually called cities or points or nodes.
In this paper we are only interested in the symmetric TSP, where cij = cji holds for all i, j.

The TSP in its general form is NP-hard [1]. However, the optimization literature contains many highly-structured special
cases that can be solved in polynomial time; see for instance [2–4] for surveys of such efficiently solvable cases of the TSP.
Manywell-known efficiently solvable cases of the TSP result from imposing conditions on the underlying distancematrix. An
important subclass of these conditions is formed by the so-called four-point conditions. Consider four points i, j, k, lwith 1 ≤

i < j < k < l ≤ n. The (symmetric!) distance matrix contains six different entries for these four points, which correspond
to the six edges connecting the points. There are three pairings of these points into two disjoint edges {(i, j), (k, l)}, {(i, k),
(j, l)}, {(i, l), (j, k)}, and we denote the lengths of these pairs as follows:

A = cij + ckl, B = cik + cjl, C = cil + cjk.

Now a four-point condition simply specifies one or two inequalities which rank the values A, B, C; these inequalities have
to be satisfied for all possible choices of i, j, k, lwith 1 ≤ i < j < k < l ≤ n.
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Let us illustrate these notions with two concrete examples. The story of four-point conditions for the TSP started more
than fifty years ago, when Fred Supnick [5] investigated the following special case of the TSP. Supnick assumed that the
distance matrix (cij) satisfies for all i, j, k, lwith 1 ≤ i < j < k < l ≤ n the conditions

cij + ckl ≤ cik + cjl and cik + cjl ≤ cil + cjk.

The results of Supnick yield a polynomial time solution for his special case. In our language, such a Supnick distance matrix
is specified by the four-point conditions A ≤ B and B ≤ C.

The second example concerns the work of Kalmanson [6] who back in 1975 considered the so-called quadrangle
inequalities

cij + ckl ≤ cik + cjl and cik + cjl ≥ cil + cjk

for all i, j, k, lwith 1 ≤ i < j < k < l ≤ n. These inequalities capture certain properties of convex quadrangles, and essentially
state that in a convex quadrangle the total length of the two diagonals is always greater or equal to the total length of two
opposing sides. In our language, Kalmanson’s conditions are stated as the four-point conditions A ≤ B, B ≥ C.

Specially structuredmatrices introduced above are related to some other optimization problems.Many of these problems
involve the so-called Monge matrices. An n × nmatrix C is called aMonge matrix if

cij + crs ≤ cis + crj for all 1 ≤ i < r ≤ n, 1 ≤ j < s ≤ n.

Themain diagonal elements are involved in the definition above, while they are irrelevant to the TSP. Notice that no diagonal
elements are involved in the definitions of Supnick and Kalmanson matrices. It can be shown (see [2, Proposition 2.13,
p. 508]) that for example in a Supnick matrix, the diagonal elements can always be specified so that the matrix becomes a
special case of the Monge matrix. For more information on the importance of Monge matrices in discrete optimization, the
reader is referred to the surveys [7,8] and some recent publications [9–14].

Kalmanson matrices, although not as popular as Monge matrices, are also well known to the Operational Research
community. If involved, Kalmanson matrices allow one to find in polynomial time solutions to such problems as the
prize-collecting TSP [15], the master tour problem [16], the Steiner tree problem [17], the three-dimensional matching
problem [18], and the quadratic assignment problem [19,20].

Note that both Supnick matrices and Kalmanson matrices satisfy the condition A ≤ B. In general, a distance matrix
satisfying this condition is known as a Demidenko matrix [21]. As first shown in [21], an optimal tour for the Demidenko
TSP can be found in the set of pyramidal tours. A tour τ = ⟨1, i1, i2, . . . , ir , n, j1, j2, . . . , jn−r−2, 1⟩ is called pyramidal, if
i1 < i2 < · · · < ir and j1 > j2 > · · · > jn−r−2. Although the set of pyramidal tours contains an exponential number 2n−2 of
tours, an optimal pyramidal tour can be computed through dynamic programming in O(n2) time; see [21] and also [2,3]. The
set of pyramidal tours was probably one of the first well-known exponential neighborhoods in combinatorial optimization
that could be searched in polynomial time. Studies of other exponential neighborhoods have been extensively reported in
the literature for various combinatorial optimization problems; see [22–26], and the surveys [27,28].

Contribution of this paper: in this paper, we classify all possible four-point conditions for the TSP with respect to their
computational complexity. We determine for each of them whether the resulting special case of the TSP can be solved in
polynomial time orwhether it remains NP-hard. Parts of our work have been reported in conference papers by Deineko [29],
Deineko, Klinz and Woeginger [30] and Deineko and Tiskin [31].

Technical description of our approach: the typical approach to show that a certain set of four-point conditions yields
a polynomially solvable special case of the TSP is as follows. As a first step, one identifies an appropriate neighborhood S
which is a subset of highly-structured permutations. In the second step, one proves that the neighborhood always contains
an optimal tour. And in the third step, one shows that optimization over S is easy and can be done in polynomial time.

The second step (showing that S contains an optimal tour) is usually done by the so-called tour improvement technique,
and the underlying idea is as follows. One starts from an arbitrary tour τ , and constructs a corresponding sequence τ =

τ1, τ2, . . . , τT of tours such that

c(τ1) ≥ c(τ2) ≥ · · · ≥ c(τT ).

The final tour τT lies in the neighborhood S, and the four-point conditions are used to establish the inequalities c(τt) ≥

c(τt+1) for t = 1, . . . , T . In some lucky cases, the neighborhood contains only a polynomial number of tours (or even
consists of a single tour), and then the third step is trivial.

For example, the tour improvement technique can be used to show that for the Supnick TSP [5] an optimal tour is given
by σSmin = ⟨1, 3, 5, 7, 9, . . . , 8, 6, 4, 2, 1⟩; in other words the optimal solution first traverses the odd numbers in increasing
order and then the even numbers in decreasing order. For the Kalmanson TSP [6], the tour improvement technique shows
that an optimal tour is given by the identity permutation τKmin = ⟨1, 2, 3, . . . , n − 1, n, 1⟩; see also [2].

Notation: the set of all permutations of {1, 2, . . . , n} is denoted by Sn. For τ ∈ Sn, we denote by τ−1 the inverse of τ ; hence
τ−1(i) is the pre-image of i in permutation τ , for i = 1, . . . , n. For k > 1,wedefine τ k(i) recursively as τ(τ (k−1)(i)), and τ−k(i)
as τ−1(τ−(k−1)(i)). We also use a cyclic representation of a cyclic permutation of the form τ = ⟨i, τ (i), τ 2(i), . . . , τ−2(i),
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