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a b s t r a c t

We consider the accumulating priority queue (APQ), a priority queue where customer priorities are a
function of theirwaiting time. This time-dependent prioritymodelwas first proposed byKleinrock (1964),
and, more recently, Stanford et al. (2013) derived the waiting time distributions for the various priority
classes when the queue has a single server. The present work derives expressions for the waiting time
distributions for a multi-server APQ with Poisson arrivals for each class, and a common exponential
service time distribution. It also comments on how to choose feasible accumulation rates to satisfy
specified performance objectives for each class.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One way of dealing with waiting line problems in the presence
of diverse client needs is a priority queueing mechanism. A
practical example from the field of health care would be the acuity
rating systems which have been employed in many countries to
classify emergency patients according to their level of severity. In
the context of emergencymedicine, the Canadian Triage andAcuity
Scale (CTAS) [1] and the Australian Triage Scale (ATS) [2] (onwhich
CTAS is based) are two examples, where patients are classified
into five priority classes (see Table 1). Each class is associated with
a specified performance target assessed in terms of a set of Key
Performance Indicators (KPIs). EachKPI comprises a threshold time
standard, along with the proportion of patients who should not
exceed that time standard. These standards are ostensibly based
upon clinical need, although the case can be made that for the
lower acuity classes, the KPIs reflect performance benchmarks
more than clinical need.

A different situation where a prioritized system arises in health
care is in hip and knee replacement surgery [3], where distinctions
are made among various elective classes (see Table 2).

There is no reason to presume, a priori, that the stipulated KPIs
for each customer classwill bemet under a classical priority service
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discipline, for any given set of patient presentation rates. It might
well be the case in a two-class system, for instance, that high-
priority patients may receive better service than their specified
target, while the service level of the low-priority patients misses
its target. This indicates the need for a priority mechanism that
can provide the extra degree of flexibility required to align the
observed performance levels with the specified KPIs. The first
model to do thiswas due to Kleinrock [4], who let customers froma
given class (say, k; k ∈ {1, 2, . . . , K}, where K denotes the number
of classes) accumulate ‘priority’ at a rate bk > 0, where bk > bj
for k < j. In this way, a customer from a non-urgent class who
experiences a very long wait will eventually accumulate sufficient
priority to access the server even when some customers from a
more urgent classmay be present, and at an earlier time point than
if a static priority mechanism were in place.

Kleinrock [4]’s analysis gave a set of recursive formulae for
the mean waiting time before service for each class. However, as
illustrated in the two previous examples, the performance of a
queueing system in a health care setting is usually specified by
the tail of the waiting time distribution for each class, and not by
the average waiting times. With this in mind, Stanford et al. [5]
recently reconsidered Kleinrock’s model, which they renamed the
‘‘accumulating priority queue’’ (APQ), and obtained the waiting
time distribution for each priority class in the single server setting.

It can be argued that a variant of the accumulated priority
approach is being used already in certain priority health care
settings, on an implicit level at least, whenever the deciding health
care professional factors the time spent waiting as well as the
patient’s acuity level in the decision to select the next patient for
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Table 1
CTAS key performance indicators.

Category Classification Access Performance level

1 Resuscitation Immediate 98%
2 Emergency 15 min 95%
3 Urgent 30 min 90%
4 Less urgent 60 min 85%
5 Not urgent 120 min 80%

Table 2
Key performance indicators for hip and knee replacement surgery, Canada.

Category Wait time target

Emergency Immediate to 24 h
Urgent, priority 1 Within 30 days
Urgent, priority 2 Within 90 days
Scheduled Consultation within 3 mon,

Treatment in next 6 mon

treatment. In fact, Hay et al. [6] in their simulation model present
an approach employing what they call ‘‘operational priority’’, in
which each patient is assessed, and assigned an initial priority
score which then increases over time.

This note is the first to present distributional results of a
queueing-theoretic form for an APQ in a multi-server setting. The
results that we present have restricted applicability, in that they
require us to assume that all treatment times are exponentially
distributed with the same mean. As such, they could be applied in
settings such as hip and knee surgery, where treatment durations
are comparable for all patient groups (except for Emergency cases
such as hip fractures, which are handled separately). The present
model cannot be applied in an Emergency Department setting,
where treatment times are clearly different for patients of the
various acuity levels. (This case is the subject of ongoing work, for
which substantial further analytical effort is required.)

The purposes of this note are two-fold. In the first instance, we
wish to present the exact transform of the waiting time distribu-
tion for each class in the case where treatment times are identical.
The second purpose is to carry out numerical investigations to as-
sess the performance of the multi-server APQmodel. Typically, for
a multi-server system with two or three classes and KPIs with a
doubling time benchmark (such as was seen for the lower classes
under CTAS and ATS), we are interested in addressing questions
such as which are the limiting KPIs, what are the optimal accumu-
lation rates to assign, and what is the maximal traffic load that can
be accommodated by a given number of servers.

The remainder of the paper is arranged as follows. In the next
sectionwe describe themodel. Section 3 contains our derivation of
the waiting time distribution for each class. A series of numerical
investigations are reported in Section 4, where we also present a
method for choosing the optimal value of the accumulation rates
to satisfy given performance objectives in the two-class case. The
final section of the paper gives conclusions and future research
directions.

2. Description of the model

The model considered in this note is essentially that in [4,5],
but with c > 1 servers, and it is restricted to the case of a common
exponential service time distribution for all classes. Customers of
class-k, k = 1, 2, . . . , K arrive to the queue according to a Poisson
processwith rate λk. If a server is freewhen the customer of class-k
arrives, then that customer enters service immediately. Otherwise,
they wait in the queue for service, accumulating priority at rate bk
where b1 > b2 > · · · > bK , so class-1 here is the highest priority
class, and class-K the lowest. Thus a customer of type k arriving at
time t will have accumulated priority bk(t ′ − t) by time t ′. If all

servers are busy, then at the time of the next service completion,
the customer that enters service will be the one with the highest
accumulated priority at that instant. The common exponential ser-
vice time distribution has mean 1/µ and Laplace Stieltjes Trans-
form (LST)B(s) = µ/(µ + s). All inter-arrival times and service
times are independent of one another. As in [5], throughout this
note, the LST of a random variable with distribution function F will
be denoted byF .

In the interests of tractability, we restrict ourselves to the case
where the service times are exponentially-distributed with a com-
monmean. Whereas, in a single server queue, the commencement
of service for a waiting customer occurs when the service of the
preceding customer is completed, in a multi-server queue, it oc-
curs when one of the servers becomes free. In the single-server
case there are no ongoing services toworry about but, in themulti-
server case, the future evolution of the queue will depend on the
stage of service of those customers whose service is continuing.

Specifically we need to know the minimal residual service time
among the continuing customers, in order to specifywhen the next
customer canmove into service. For non-exponential distributions,
this task is tractable only when the number of servers is small, and
the service time distributions are simple extensions of the expo-
nential, such as Erlang distributions of low order, or mixtures of
two exponentials. Even in the case where the other service times
are exponential, but with class-dependent means, to characterize
the minimum residual time we need to know the mix of continu-
ing customers, and the different possibilities for such a mix make
the analysis, at least, very complicated. Furthermore, it is at present
unclear how the reordering of service times in an APQ setting af-
fects the duration of the busy periods.

For these reasons, we have opted to solve the common expo-
nential case first and, as we have already noted, it can be a good
model for situations such as hip and knee surgery.We are pursuing
the non-identical service time case in ongoing work, both analyt-
ically and, as in [7] via a near-perfect simulation approach which
can be applied to this situation.

3. Waiting time distributions

We turn now to finding the distribution of the waiting time
before service commences for the various classes. Let W (k)(s)
denote the Laplace transform of the stationary waiting time
distribution for customers of class-k; k = 1, 2, . . . , K .We begin by
observing that the waiting time prior to service is strictly positive
only if an arrival finds all c servers busy, and otherwise it is 0.
Any priority mechanism that selects among waiting customers
with service time requirements drawn from the same distribution
will have no impact upon the chance that an arrival finds all of
the servers busy, which can be identified from the corresponding
M/M/c queue.

With C(A, c) being the probability that all servers are simul-
taneously busy in a stationary M/M/c queue with A = λ/µ and
λ =

K
i=1 λi, it immediately follows that

W (k)(s) = (1 − C(A, c)) + C(A, c)W (k)
+ (s); k = 1, 2, . . . , K (1)

where W (k)
+ (s) is the LST of the class-k waiting time distribution,

conditional on it being positive, that is, conditional on a class-k
customer arriving to find all servers busy.

Thuswe need to find W (k)
+ (s), the LST of the class-kwaiting time

distribution, conditional on an arrival of class-k finding all servers
busy. In the following lemma we will denote this by W (k)

+ (s; µ, c),
to explicitly state the dependence of the results on the number of
servers c and the common service rate µ for all classes.
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