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a b s t r a c t

We address the problem of dynamic ambulance repositioning, in which the goal is to minimize the
expected fraction of late arrivals. The decisions on how to redeploy the vehicles have to be made in real
time, andmay take into account the status of all other vehicles and accidents. This is generally considered a
difficult problem, especially in urban areas, and exact solutionmethods quickly become intractable when
the number of vehicles grows. Therefore, there is a need for a scalable algorithm that performs well in
practice.

We propose a polynomial-time heuristic that distinguishes itself by requiring neither assumptions
on the region nor extensive state information. We evaluate its performance in a simulation model
of emergency medical services (EMS) operations. We compare the performance of our repositioning
method to so-called static solutions: a classical scenario in which an idle vehicle is always sent to its
predefined base location. We show that the heuristic performs better than the optimal static solution for
a tractable problem instance. Moreover, we perform a realistic urban case study in which we show that
the performance of our heuristic is a 16.8% relative improvement on a benchmark static solution. The
studied problem instances show that our algorithm fulfills the need for real-time, simple redeployment
policies that significantly outperform static policies.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In a world where medical resources and budgets are limited,
emergency medical services (EMS) managers are forced to re-
think the way they spend both. Medical decisions aside, mathe-
matical models can help them obtain more efficiency. They can
also be helpful in understanding the effects of a certain decision
(e.g., adding one extra vehicle, or changing the dispatch policy),
which is otherwise difficult to oversee due to the stochastic na-
ture of accidents. Typically, geographical aspects and service level
agreements need to be taken into accountwhen solving such prob-
lems.

In an EMS system, accidents occur randomly throughout the
region.1 Each accident needs to be served as soon as possible by
an ambulance. The number of vehicles is typically limited, and
vehicles are not always available due to serving other accidents.
If an ambulance is not busy serving an accident, it is either on the

∗ Corresponding author.
1 Throughout this paper, we will use ‘accidents’ to refer to demand for

ambulances. Accidents include medical incidents and are not limited to traffic
collisions.

road (driving), or stationed at one of the selected base locations.
(Note that an idle ambulance can respond to an accident while still
on the road, there is no need to return to a base location first.) Since
minimizing the response time is critical in emergency situations, it
is important to place ambulances in good positions with respect
to the demand. This leads to the search for good base locations, as
well as a good distribution of vehicles over the bases.

1.1. Related work

In ambulance planning, models often use graph representa-
tions. Accidents can occur at the nodes, and there are certain dis-
tances (or driving times) between nodes. The travel times are
assumed to be known in advance, and may be deterministic or
stochastic (in which case they are only known in distribution). The
goal is usually tomaximize the fraction of accidents servedwithin a
certain (pre-determined) time. There are articles that search for the
number of vehicles needed [1], the best base locations [2], and/or
the best distribution of vehicles over the bases [3].

Static models
Mathematical models can be used at various stages of the EMS

process. First, consider the planning stage. At this point, static
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models are often used to describe the problem. Here ‘static’ means
that each ambulance is sent to its own home base whenever it
becomes idle. These models can be used to determine the optimal
locations of bases, as well as the number of vehicles needed per
base.

Early research in ambulance planning focused on deterministic
location problems [2,4]. These formulations ignore the stochastic
aspects of an EMS system, typically by assuming that one vehicle,
or a constant number of vehicles, is always sufficient to cover
the demand points. Later, research turned to probabilistic static
models. Awell-knownexample is themaximumexpected covering
location problem formulation (MEXCLP) [3]. In this formulation
there is a limited number of vehicles that need to be distributed
over a set of possible base locations. Each vehicle is modeled to be
unavailablewith a pre-determined probability. For amore detailed
description of this model, we refer the reader to Section 2.

Over the years, several variants ofMEXCLP have been published
by different authors [5,6]. These models are generally considered
to give good static solutions. (Note a static solution can be
defined by giving the location of the ‘home base’ for each vehicle.)
The downside of static policies is that they do not utilize all
possibilities, e.g., real-time information, to obtain good coverage.
Clearly, the assumption of a vehicle belonging to a specific base is
unnecessary in real life. Using themodels above, one can attempt to
find the optimal policy within the solution space of static policies.
However, in the space of all policies, this will almost always be
suboptimal.

Dynamic models
Dynamic models are used to find good (re)distributions of

vehicles when a number of ambulances are busy responding to
accidents. In other words, they look for repositioning strategies,
which stand in contrast to strategies where every ambulance
is sent back to its ‘home base’ after serving an accident. The
first of such models can be found in [7], using tabu search. This
shifted focus of research was accompanied with an increasing
number of EMS systems using a dynamic allocation of vehicles to
bases. Surveys of North American EMS operators showed that the
percentage of operators who used a dynamic strategy increased
from 23% in 2001 [8] to 37% in 2009 [9] (see also [10]). This
indicates that the EMS community is becoming more aware that
a dynamic policy can help them achieve greater service without
increasing capacity.

Dynamic models usually do not search for good base locations,
but instead consider the bases as a given, fixed set. The redeploy-
ment policies that have been published so far are roughly divid-
able in two subclasses, which we will (very generalizing) refer to
as lookup tables and real-time optimization.
Lookup tables. The models in this class are typically looking for an
optimal configuration for each number of available ambulances. A
recent example can be found in [10]. The job of steering the set
of available vehicles towards this configuration is usually left to
the dispatchers. Unfortunately, poorly executed redeployment can
devaluate even the most crafty policy. Even if the decision of how
to move the vehicles in order to obtain the required configuration
is part of the mathematical solution, this approach altogether re-
quires a lot of ambulancemovements. This increases thework load
on the ambulance crew, which is a downside in many realistic sit-
uations. Furthermore, note that in busy regions, where the number
of idle ambulances changes rapidly, the systemwill not be in com-
pliance with the lookup table for most of the time.
Real-time optimization. On the other hand, there are various papers
that model the randomness in the system explicitly, for example,
by formulating the problem as a Markov decision process. When
the model has only a few ambulances, one can solve it using exact
dynamic programming [11].

When the state space grows, for example due to the number
of vehicles considered, the problem quickly becomes intractable.
In those cases we need to turn to alternative solution methods.
Successful approaches include approximate dynamic program-
ming [12]. Here, the state space is modeled rather elaborately, and
the authors need advanced mathematical methods to solve the
problem. Furthermore, it requires a mechanism to tune parame-
ters to the use case, which is time consuming to both implement
and execute. For one large city, the tuning process can take as long
as one year. It remains possible to calculate the repositioning de-
cision in real time, because these heavy computations are done
in a preparatory phase. Furthermore, the authors try to speed up
the tuning process, for example by using the so called post deci-
sion state. (For an elaborate discussion of the post decision state,
see [13].) For the use case of the city ofMelbourne described in [14],
this reduced the computation time from approximately one year
to 12 h. Although this demonstrates the power of the post deci-
sion state, the remaining 12 h should also highlight the complexity
of the method. The heavy pre-computations and the need for an
expert to implement this, make this method inaccessible and im-
practical.

Furthermore, the performance of the approximate dynamic
programming approach is highly dependent on the choice of base
functions. The base functions as defined in [14] are elegant, but
unlikely to work well in general. That is because the underlying
idea used is the following: an accident is likely to be served late if
there are no idle vehicles present at the nearest base. For many
EMS regions, for example in the Netherlands, this is typically
far from the truth. Moreover, the policies should work well for
densely populated areas, the more difficult case of ambulance
planning, where some demand points can be reached within the
time threshold from as many as 8 different base locations. This
complexifies the construction of good base functions.

1.2. Our contribution

In practice, ambulance planners face a number of challenges.
Usually only limited and coarse-grained information about the
state of the system is available for decision making, while the
accuracy of the computations should be good, and at the same the
computation times should not be prohibitively large. Motivated
by this, the goal of this paper is to propose an algorithm that is
efficient yet easy-to-use, thereby properly balancing the trade-off
between simplicity, accuracy and scalability. Thereby, we ensure
that even EMS providers with few tools available to track real-
time information, can implement this solution. We focus on busy,
urban areas. In such a setting it is unacceptable to move every
vehicle each time an accident occurs. And although some pro-
active relocationsmay be useful, they clearly enlarge the workload
for the crew. We choose to limit our repositioning opportunities
in the following way. An ambulance is only allowed to relocate
when it becomes idle (which can be at the incident scene, or at
a hospital). Thereby, the number of trips will be the same as for a
static strategy, which will help convince EMS managers that our
proposed solution is a good alternative to a static strategy.

The ambulance redeployment algorithm we develop in this
paper, is both intuitively clear and computable in real time. The
solution does not require a preparatory learning phase and is
easy to implement. Furthermore, the algorithm requires very little
real time data, in fact, only the destinations (locations) of the
available vehicles are used. We then decide where to send the
available vehicle, based on an expression for marginal coverage
improvement.Marginal coverage is an idea that originated in static
ambulance planning [3], but this paper shows that it can be useful
in dynamic ambulance planning as well. Through this notion of
coverage we aim to reduce our KPI: the expected fraction of late
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