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a b s t r a c t

It is known that the value function of a Markov decision process, as a function of the discount factor λ,
is the maximum of finitely many rational functions in λ. Moreover, each root of the denominators of the
rational functions either lies outside the unit ball in the complex plane, or is a unit rootwithmultiplicity 1.
We prove the converse of this result, namely, every function that is themaximumof finitelymany rational
functions in λ, satisfying the property that each root of the denominators of the rational functions either
lies outside the unit ball in the complex plane, or is a unit root with multiplicity 1, is the value function
of some Markov decision process. We thereby provide a characterization of the set of value functions of
Markov decision processes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Markov decision processes (MDP for short) are a standard tool
for studying dynamic optimization problems. The discounted value
of such a problem is the maximal total discounted amount that
the decision maker can guarantee to himself. By Blackwell [1], the
function λ → vλ(s) that assigns the discounted value at the initial
state s to each discount factor λ is the maximum of finitely many
rational functions (with real coefficients). Standard arguments
show that the roots of the polynomial in the denominator of
these rational functions lie outside the unit ball in the complex
plane, or on the boundary of the unit ball, in which case they
have multiplicity 1. Using the theory of eigenvalues of stochastic
matrices one can show that the roots on the boundary of the unit
ball must be unit roots.

In this note we prove the converse result: every function λ →

vλ that is the maximum of finitely many rational functions such
that each root of the polynomials in the denominators either lies
outside the unit ball in the complex plane, or is a unit root with
multiplicity 1 is the value of some Markov decision process.

2. The model and the main theorem

Definition 1. A Markov decision process is a tuple (S, µ, A, r, q)
where
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• S is a nonempty finite set of states.
• µ ∈ ∆(S) is the distribution according to which the initial state

is chosen,where∆(X) is the set of probability distributions over
X , for every nonempty finite set X .

• A = (A(s))s∈S is the family of nonempty and finite sets of actions
available at each state s ∈ S. Denote SA := {(s, a) : s ∈ S, a ∈

A(s)}.
• r : SA → R is a payoff function.
• q : SA → ∆(S) is a transition function.

The process starts at an initial state s1 ∈ S, chosen according to
µ. It then evolves in discrete time: at every stage n ∈ N the process
is in a state sn ∈ S, the decisionmaker chooses an action an ∈ A(sn),
and a new state sn+1 is chosen according to q(· | sn, an).

A finite history is a sequence hn = (s1, a1, s2, a2, . . . , sn) ∈ H :=

∪
∞

k=0(SA)k ×S. A pure strategy is a function σ : H → ∪s∈S A(s) such
that σ(hn) ∈ A(sn) for every finite history hn = (s1, a1, . . . , sn),
and a behavior strategy is a function σ : H → ∪s∈S ∆(A(s)) such
that σ(hn) ∈ ∆(A(sn)) for every such finite history. In other words,
a behavior strategy σ assigns to every finite history a distribution
over the set of available actions, which we call a mixed action. The
set of behavior strategies is denotedB. A strategy is stationary if for
every finite history hn = (s1, a1, . . . , sn), the mixed action σ(hn) is
a function of sn and is independent of (s1, a1, . . . , an−1).

Every behavior strategy together with a prior distribution µ
over the state space induce a probability distribution Pµ,σ over
the space of infinite histories (SA)∞ (which is endowed with the
product σ -algebra). Expectation w.r.t. this probability distribution
is denoted Eµ,σ .
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For every discount factor λ ∈ [0, 1), the λ-discounted payoff is

γλ(µ, σ ) := Eµ,σ


∞
n=1

λn−1r(sn, an)


.

When µ is a probability measure that is concentrated on a single
state s we denote the λ-discounted payoff also by γ (s, σ ). The
λ-discounted value of the Markov decision process, with the prior
µ over the initial state is

vλ(µ) := sup
σ∈B

γλ(µ, σ ). (1)

A behavior strategy is λ-discounted optimal if it attains the
maximum in (1).

Denote by V the set of all functions λ → vλ(µ) that are the
value function of someMarkov decision process startingwith some
prior µ ∈ ∆(S). The goal of the present note is to characterize the
set V .

A Markov decision process is degenerate if |A(s)| = 1 for every
s ∈ S, that is, the decision maker makes no choices along the
process.WhenM is a degenerateMarkov decision process we omit
the reference to the action in the functions r and q. A degenerate
Markov decision process is thus a quadruple (S, µ, r, q), where S
is the state space, µ is a probability distribution over S, r : S → R,
and q(· | s) is a probability distribution over S for every state s ∈ S.

Denote by VD the set of all functions that are payoff functions
of some degenerateMarkov decision process and byMaxVD the set
of functions that are the maximum of a finite number of functions
in VD. By Blackwell [1] we have V = MaxVD.

Recall that a complex numberω ∈ C is a unit root if there exists
n ∈ N such that ωn

= 1.

Notation 1. (i) Denote by F the set of all rational functions P/Q
such that each root of Q is either (a) outside the unit ball, or (b) a
unit root with multiplicity 1.

(ii) Denote by MaxF the set of functions that are the maximum of a
finite number of functions in F .

The next proposition states that any function in V is the
maximum of a finite number of functions in F .

Proposition 1. VD ⊆ F , and consequently V ⊆ MaxF .

Proof. Fix a degenerateMDP. For every priorµ, and every discount
factor λ ∈ [0, 1), the vector (γλ(s1))s1∈S is the unique solution of a
system of |S| linear equations in λ:

γλ(s) = r(s) + λ

s′∈S

q(s′ | s)γλ(s′), ∀s ∈ S.

It follows that

γλ = (I − λQ)−1
· r,

where Q = (q(s′ | s))s,s′∈S . By Cramer’s rule, the function λ →

(I−λQ)−1 is a rational functionwhose denominator is det(I−λQ).
In particular, the roots of the denominator are the inverse of the
eigenvalues of Q. Since the denominator is independent of s, it is
also the denominator of γλ(µ) =


s∈S µ(s)γλ(s).

Denote the expected payoff at stage n by xn := Eµ[r(sn)], so that
γλ(µ) =


∞

n=1 xnλ
n−1. Since |xn| ≤ ∥r∥∞ := max(s,a)∈SA |r(s, a)|

for every n ∈ N, it follows that the denominator det(I − λQ) does
not have roots in the interior of the unit ball and that all its roots
that lie on the boundary of the unit ball have multiplicity 1. These
two observations hold since by the triangle inequality we have

|γλ(µ)| =

 ∞
n=1

xnλn−1

 ≤ ∥r∥∞

∞
n=1

|λ|
n−1

=
∥r∥∞

1 − |λ|
. (2)

If λ0 is a root of det(I − λQ) that lie in the interior of the unit ball,
then for the payoff function r ≡ 1 we would have that γλ0(µ) =

∞, which violates (2). Similarly, if λ0 is a root of det(I − λQ) with
multiplicity at least 2 that lies on the boundary of the unit ball, then
for the payoff function r ≡ 1 Eq. (2) is violated.

Moreover, by, Dmitriev and Dynkin [2] the roots that lie on the
boundary of the unit ball must be unit roots. �

The main result of this note is that the converse holds as well.

Theorem 1. VD ⊇ F , and consequently V = MaxF .

To avoid cumbersome notations we write f (λ) for the function
λ → f (λ). In particular, λf (λ)will denote the functionλ → λf (λ).

3. Characterizing the set VD

The following lemma lists several properties of the functions
implementable by degenerate Markov decision processes.

Lemma 1. For every f ∈ VD we have

(a) af (λ) ∈ VD for every a ∈ R.
(b) f (−λ) ∈ VD.
(c) λf (λ) ∈ VD.
(d) f (cλ) ∈ VD for every c ∈ [0, 1].
(e) f (λ) + g(λ) ∈ VD for every g ∈ VD.
(f) f (λn) ∈ VD for every n ∈ N.

Proof. Let Mf = (Sf , µf , rf , qf ) be a degenerate Markov decision
process whose value function is f .

To prove Part (a), we multiply all payoffs in Mf by a. Formally,
define a degenerate Markov decision process M ′

= (Sf , µf , r ′, qf )
that differs from M only in its payoff function: r ′(s) := arf (s) for
every s ∈ Sf . The reader can verify that the value function of M ′ is
af (λ).

To prove Part (b), multiply the payoff in even stages by −1.
Formally, letS be a copy of Sf ; for every state s ∈ Sf we denote
bys its copy in S. Define a degenerate Markov decision process
M ′

= (Sf ∪S, µf , r ′, q′)with initial distributionµf (whose support
is Sf ) that visits states inS in even stages and states in Sf in odd
stages as follows:

r ′(s) := rf (s), r ′(s) := −rf (s), ∀s ∈ Sf ,
q′(s′ | s) = q′(s′ |s) := qf (s′ | s), ∀s, s′ ∈ Sf ,
q′(s′ | s) = q′(s′ |s) := 0, ∀s, s′ ∈ Sf .

The reader can verify that the value function ofM ′ is f (−λ).
To prove part (c), add a state with payoff 0 from which the

transition probability to a state in Sf coincides with µ. Formally,
define a degenerate Markov decision process M ′

= (Sf ∪

{s∗}, µ′, r ′, q′) in which µ′ assigns probability 1 to s∗. r ′ coincides
with rf on Sf , while r ′(s∗) := 0. Finally, q′ coincides with qf on Sf ,
while at the state s∗, q′(· | s∗) := µ. The value function of M ′ is
λf (λ).

A state s ∈ S is absorbing if q(s | s, a) = 1 for every action a ∈

A(s). To prove part (d), consider the transition function that at ev-
ery stage, moves to an absorbing state with payoff 0 with probabil-
ity 1− c , and with probability c continues as inM . Formally, define
a degenerate Markov decision processM ′

= (Sf ∪ {s∗}, µ, r ′, q′) in
which µ coincides with µf , r ′ and q′ coincide with rf and qf on Sf ,
r ′(s∗) := 0, and q′(s∗ | s∗) := 1 (that is, s∗ is an absorbing state),
and

q′(s∗ | s) := 1 − c, q′(s′ | s) := cqf (s′ | s), ∀s, s′ ∈ Sf .

The value function ofM ′ at the initial state s1,f is f (cλ).
To prove Part (e), we show that (1/2)f + (1/2)g is inVD andwe

use part (a) with a = 2. The function (1/2)f + (1/2)g is the value
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