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We establish a limit theorem supporting a Poisson approximation for the departure process from a multi-
server queue that tends to have many busy servers. This limit can support approximating a flow out of
such a queue in a complex queueing network by an independent Poisson source. The main ideas are:
(i) to scale time so that previous many-server heavy-traffic limits can be applied and (ii) for time-varying
arrival-rate functions, to scale (spread out) time by a large factor about each fixed time.
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1. Introduction

Complex queueing systems are typically networks of queues,
with arrival processes at individual queues being composed of
departures and overflows from other queues, with the service-time
cumulative distribution functions (cdf's) often being not nearly
exponential. Thus an arrival process at an internal queue usually
cannot be assumed to be exactly a Poisson process; e.g., see [3].
Nevertheless, a Poisson approximation may be reasonable.

Example 1.1 (Final Checkout in Online Shopping). Suppose that we
want to develop a stochastic arrival process model for the final
checkout in a complex online shopping system. Many separate
people shop online until they are ready for final checkout, To
illustrate, we model the checkout as the second queue in a two-
queue G;/GI/oo — -/GI/1 network, in which the first queue is
an infinite-server (IS) model with a general arrival process having
a time-varying arrival-rate function A(t), which is independent
of service times that are independent and identically distributed
(i.i.d.) with a general cdf F having a continuous probability density
function (pdf) f with F(t) = fotf(s) ds, t > 0. The output of the
IS queue is the arrival process to a final single-server (SS) checkout
queue, with general service cdf, unlimited waiting room and
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service in order of arrival. The exact form of the departure-rate
function from the IS queue is

5(t) = / FOAE —y) ds, (1)
0

as given in Theorem 1 of [4]; it is the same for G; as for M;; see
§5 of [9]. In this setting we provide support for approximating the
final SS queue by an M;/GI/1 queue, where the arrival process
is a nonhomogeneous Poisson process (NHPP) with arrival-rate
function §(t) in (1). An efficient algorithm to calculate performance
measures when A(t) is periodic is given in [16].

For a concrete simulation, consider the stationary GI /Gl /oo —
-/GI/1 model in which all service times are ii.d. and the
external arrival process is a renewal process. To introduce extra
variability, we assume that all three GI components have the
hyperexponential cdf (H,, mixture of two exponentials) with
squared coefficient of variation (scv, variance divided by the square
of the mean) c?> = 4 and balanced means as in p. 137 of [21]; that
leaves only the mean or its reciprocal, the rate, to be specified. We
let the arrival rate be A = 100 and the service rates at the two
queues be ;11 = 1and u, = 200. By Little’s law, these rates make
the mean steady-state number of busy servers in the IS queue be
100, which we regard as moderately large scale. In actual online
checkout, the mean number of busy shoppers is likely to be much
larger, and the difference between the two service rates is likely to
be even greater.

In this context, we suggest that the performance at the final
SS queue can be approximated by the M /H,/1 model, for which
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the mean steady-state waiting time before starting service has the
Pollaczek-Khintchine (PK) formula EW = pu; (1 + ¢?)/2(1 —
p) = 0.0125 for p = 0.50, ;t; = 200 and c?> = 4. The intuition
is that, with many busy servers, the departure process from the IS
queue is much like the superposition of i.i.d. renewal processes,
one for each server, for which the limit is Poisson, as discussed
in §9.8 of [23]. Of course, the servers do not remain busy all the
time and the number of busy servers is random, varying over time,
so that representation is only approximate. Thus, there remains
something to prove for departure processes.

A simulation experiment was conducted for this example.
It shows that the interarrival-time cdf at the second queue is
approximately exponential with mean 0.01 and that the estimated
mean wait EW is only 8% above the PK formula for M arrivals; see
the appendix for more details.

We conclude this example by mentioning that part of the
justification for the M /H,/1 approximation with a Poisson arrival
process for the SS queue is the relatively low traffic intensity at
the SS queue, because the departure process from the H, /H, /oo IS
queue with many busy servers is only approximately Poisson over
a short time scale. For example, the central limit theorem for the
departure process will not have the same variability parameter as
for a Poisson process. As discussed in §9.8 of [23], there is different
variability at different time scales. As p 1 1, the ratio of the actual
mean EW(p) to the mean with Poisson arrivals increases. We
found that the M/H,/1 approximation for the mean EW was 27%
low when the service rate at the second queue was decreased
so that p, = 0.90. See [20] for a related superposition process
example. W

In [22] we previously established a limit theorem supporting
the Poisson approximation for the departure process in the
simulated example; our purpose here is to extend the result
to a larger class of models. First, for infinite-server models, we
extend the result established for the GI/Ph/oco model in [24] to
the G;/GI/oo model, having a general service-time distribution
(the GI) instead of Ph and from a renewal arrival process (GI)
to general (allowing non-renewal) arrival process with a time-
varying rate (the G;). The proof is similar, except now we apply
the two-parameter MSHT FWLLN for the G; /GI /oo model reviewed
in [18] instead of the single-parameter FWLLN for the GI/Ph/oco
model in [24].

We are also interested in establishing a result that applies to
models with finitely many servers, perhaps including customer
abandonment and feedback. A concrete example of a closed
network of two -/GI /s queues which could be used in this way is
contained in [12]. In that model there is one SS station with state-
dependent service rate and one IS station. In the same spirit, our
approach provides the basis for an alternate proof of a Poisson limit
for a queue with delayed feedback (which can be regarded as a
-/GI /oo IS queue) in [19]; they established the Poisson limit using
a coupling technique.

The Poisson limit in [22] was established using martingale
methods The “martingale method” means that we focus on the
stochastic departure rate or intensity of the departure process
and its integral, called the compensator, which depends on a
specification of the history or filtration; see [2,17] for introductions
and [5,8] for advanced accounts. We will establish the Poisson
limit, independent of the history of the queueing system, by
showing that the compensators approach a deterministic limit;
e.g., see Theorem VIII.4.10 in [8] and Problem 1 on p. 360 of [5].

We have special interest in many-server queues with time-
varying arrival-rate functions. To obtain useful Poisson limits for
those models, we will introduce a new scaling method, spreading
out time about a fixed reference time. The Poisson limit then
provides support for approximating the departure process by an

NHPP. For the required MSHT FWLLN's in G; /Gl /oo and G, /GI /s; +
GI models with general nonstationary arrival processes, we can
apply [11,18,10,15], respectively. These limits exploit a random-
measure or two-parameter framework. We present our results
with minimum technicalities; we refer to those papers for the
details.

In Section 2 we review the MSHT FWLLN in a G;/GI/oco
model and establish the required FWLLN for the departure rate
process in Theorem 2.1. In Section 3 we establish the main
result, Theorem 3.1, which provides general conditions for the
desired Poisson limit in terms of associated MSHT limits. We
present additional supplementary material on the simulation for
Example 1.1 and a direct NHPP approximation for the departure
process in an appendiX, which is available from the author’s
website (http://www.columbia.edu/~ww2040/allpapers.html).

2. Review of the MSHT FWLLN for G;/GI /oo queues

We start by reviewing the MSHT FWLLN in Theorem 3.1in [ 18],
because we will use established properties as conditions in our
new theorem for other models.

Let = denote convergence in distribution and let D = D(I, R)
be the usual Skorohod space of right-continuous real-valued
functions with left limits on a subinterval I of the entire real line
R, possibly R itself [5,8,23]. In our setting with a continuous limits,
convergence in the Skorohod J; topology is equivalent to uniform
convergence over bounded subintervals of I.

We consider a sequence of queueing models indexed by n. Let
the arrival process have a well-defined arrival rate for each n;
i.e., let A,(tq, t;) be the number of arrivals in model n in the time
interval (t1, t;] and assume that

5]
A6, t)] = nA(6, ), where At = [ A0)ds (2
8]
for —oo < t; < t; < 400, with = denoting equality by definition.
This can be achieved by scaling (accelerating) time in a fixed arrival
process. Thus, the arrival rate in model n is

An(t) = nA(t),

As a regularity condition, we also assume that 0 < A(t) < Ay <
o00. We furthermore assume that the system starts empty at time
—to < 0.Thatavoids having to carefully treat the initial conditions,
but for a way to do so, see [1]. Let A, (t1, ) = n~'A(t1, ). We
assume a FWLLN is valid for the arrival processes; i.e.,

—0 <t < 4o0. (3)

sup  |An(ti, &) — A(t1, )] = 0 asn — oo
[ =t1<tr=ty
for all t; and ty with —oco < —t; < t; < ty < oo (weak
convergence uniformly over bounded intervals).

Assumption 1 of [18] allows a general sequence of arrival
processes, but they are required to satisfy a functional central limit
theorem (FCLT) because the primary concern was establishing the
MSHT FCLT. That FCLT condition can be weakened to having only
a FWLLN, because Theorem 3.1 only requires the MSHT FWLLN
conclusion. The proof of the FWLLN for the number of busy servers
under the weaker FWLLN condition is not discussed in [18], but it
isdiscussed in[17]; see Theorem 3.6 and §§3.4,4.3,5.2,6.1and 6.2.

Assumption 2 of [18] stipulates that the service times come
from a single i.i.d. sequence, independent of n and the arrival
processes, distributed as a random variable S having a general cdf
F. In addition, we require that the cdf F have a continuous pdf
f in terms of which we can write F(t) = fotf(s) ds,t > 0, for
F¢(t) = 1—F(t), and a failure-rate function h(t) = f(t)/F(t) that
is bounded over finite intervals. In [18] the system starts empty
at time 0. Without loss of generality, we assume that the system
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