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A conjecture appeared recently in Cacchiani et al. (2013) that a proposed LP relaxation of a certain integer
programming problem defines the convex hull of its integer points. We review a little known technique
described in Zuckerberg (2004) that can be used to construct geometric proofs that an LP relaxation is
convex hull defining. In line with this technique, we show that their conjecture is correct.
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1. Introduction

The connection between probability measures and integer
programming has antecedents in [6] (in the “Remark” on page
186), and earlier (see Part 1 in [4]), with later development in [2]
(beginning in Section 2.1) and in [8] (Chapters 3 and 4), where
this connection is shown to generalize and contextualize the lifting
methods of [1,7,6,5]. In the course of the analysis in [8], a method
is described by which an LP relaxation of an integer programming
formulation can be proven to define the convex hull of its integer
points if it can be shown that for each point in R" that is in the linear
relaxation, it is possible to draw n sets in an arbitrary measure
space that have properties that match the logical properties of
the integer feasible set in a certain way. The method is described
as “geometric”, or as in [8], as the “proof by picture method”, as
one can potentially demonstrate that a formulation is convex hull
defining by physically drawing sets in the real line or plane with
the requisite properties. In this work we will provide a compact
description and rigorous justification of the method, and we will
use it to resolve a conjecture that appeared in [3].

2. Binary integer programming and probability measures

First we review some basic definitions and facts.
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Definition 1. 1. Given a set U and a family £ # @ of subsets
of U, the pair @ = (U, £) is said to be an “algebra on U” if
&L is closed under unions, intersections and complementations,
where complementation is defined as h® = U\ h, Vh € L. Note
that for any algebra @ = (U, £), U € £.Given an algebra @ =
(U, L£), we will refer to a set h as being “in algebra @” if h € L.

2. Anonempty set a in an algebra @ = (U, £) is called an “atom”
of @ if forevery h € £, eitheraNh =aoranNh = f,ie. ais
indivisible.

3. An algebra @ = (U, £) is “generated by” sets {S;} C £ if all
sets in /£ can be written as finitely many unions, intersections
and complementations of the sets in {S;}.

4, If £ is the collection of all subsets of a set U, then @ = (U, £)
is said to be the subset algebra of U.

5. Denote the subset algebra of {0, 1}" as 4. Note that the atoms
of 4 are the points of {0, 1}" (i.e. the singleton sets).

6. Foreachi=1,...,n,defineA; = {y € {0, 1}" : y; = 1}.

7. Llet @ = (U, £) be an algebra. A set function y mapping £ to
[0, 1] is a “probability measure on @” if x (U) = 1, and if for
each disjoint pairp,q € £, x(p U q) = x(p) + x ().

Remark 2. The atoms of the algebra @ = (U, £) generated by
{S1,...,5.} C < are the nonempty sets of the form ();c,; Si N
(Micye Sf» where H € {1,...,n}. (This follows from an easy
adaptation of Lemma 5, as we will note in its proof.) It follows
then that every set in £ is a finite union of these sets, as they
are indivisible and partition U (as every point in U has a unique
membership profile in the {S;}). Abusing convention, we will
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occasionally refer to sets of this form as atoms even if they are
empty. Note also that for infinite algebras, more care is usually
taken around the definition of probability measures, but this need
not concern us here, as our focus will be on finite algebras.

Lemma 3. The algebra + is generated by {A;, i=1,...,n}.

Proof. It is sufficient to show that the atoms of «, which are the
points of {0, 1}", can be written as set theoretic expressions of {A;},
as all sets in A are obviously unions of these. For any y € {0, 1}",
letH C {1, ..., n} be the indices h for which y, = 1. Then {y} =

ﬂheH AN ﬂher A}Cl' u

The following lemma, from [8], establishes the connection
between binary integer programming and probability measures. It
shows that the convex hull of a set # C {0, 1}" is the set of points
X € R" that can be lifted to a probability measure x on 4 satisfying

Xx(F)=1.

Lemma4. Let ¥ C {0, 1}". The point x € [0, 1]" belongs to the
convex hull of ¥ iff there exists a probability measure x on 4 such
that x(¥) = 1and

xi=x@A), VYi=1,...,n )

Proof. Let {y!,...,y"} be an enumeration of all points in ¥, and
assume x € Conv(¥). Then there exist nonnegative multipliers
{A1y ..o, Ak with Y A = 1, such thatx = Y _, A;y". Noting
that the points of {0, 1}" are the atoms of the finite algebra +,
it is sufficient to define y on these points to uniquely define
the measure yx by additivity (i.e. for any G C {0, 1}", x(G) =
Zyecx(y), where we have written x(y) instead of x({y}) to
reduce clutter). Assign x (y')) = A; for all i and x(y) = 0 for all
y € F°€. Since Zir:] Ai = 1, it follows that yx is a probability
measure, and x (F) = Zyey X () = Y_i_, i = 1. Moreover,

XAy =Y xm= Y xm= Y. A

yelo hyi=1 yeryi=1 jellrlyi=1

ijyi = Xj. (2)
j=1

Conversely, if x is a probability measure on - with x (¥) = 1,and
XA =x;, i=1,...,nthenforeachj=1,...,rletd; = x (),
so that A > 0 and er:] Aj = x(¥) =1, and observe that for each

i=1,...,n,
XM= > xm= Y

X = x(A) = Z
yeFyi=1 je{l,....r}:y’;:]

ye{0,1}hy;=1
r .
> (3)
=1

which establishes that x € Conv(F). B

The main result in this section, which will justify the “proof
by picture” method, states that the convex hull of a set can be
characterized not only by probability measures on +, but also
by probability measures on arbitrary algebras. First, however, we
need a preliminary result.

In what follows, a “logical expression” is an expression com-
prised of symbols representing Boolean variables, conjunctions,
disjunctions and negations, and a “set theoretic expression” is one
comprised of symbols representing sets, unions, intersections and
complementations. We may occasionally conflate an expression
with its value, if the meaning is clear.

The following lemma concerns the relationship between logical
expressions of Boolean variables and set theoretic expressions, and

between truth assignments of Boolean variables and atomic sets. In
summary, it states that the points in a nonempty atom belong to
a set if and only if the truth assignment associated with that atom
satisfies the logical statement associated with that set.

Lemma 5. Let U be a set with subsets {Sq,...,S,}, and let @ =
(U, &L£) be the algebra generated by {Si, ..., Sy}. Let E({S;}) be a
set theoretic expression of finitely many unions, intersections and
complementations of sets from {Si, ..., Sy}. Define {By, ..., B} to
be n Boolean variables, and let L(E({B;})) be the logical expression
obtained by replacing each union in E({S;}) with logical “OR”, each
intersection with logical “AND”, each complementation with logical
“NOT” and each S; with the Boolean variable B;. Let H C {1, ...,n},
and consider the atom a = (;cy Si N [ ieye SF» and assume a # @.
Then a is a subset of the set defined by E ({S;}) if and only if the logical
statement L(E({B;})) is true for the instantiation of variables (i.e. the
“truth assignment”) that assigns B; to true for each i € H and false for
eachi e H.

Proof. The proof will be by induction. Note first that every H C
{1, ..., n} defines both an atom [,y Si N (Nicye SF, as well as
a truth assignment B; = “true”,i € H, B; = “false”,i € H°.
Consider the case for which E({S;}) is the single symbol S; for some
j. Clearly, a nonempty atom a defined by H C {1, ..., n} satisfies
a C E({S;}) (taken to mean that a is subset to the set defined
by expression E({S;})) iff j € H, and similarly L(E({B;})) = B; is
true for exactly those truth assignments with j € H. Now assume
that the lemma holds for some pair of expressions E;({S;}) and
E>({S;}), and consider E({S;}) written as E;({S;}) U E5 ({S;}). For any
H C {1,...,n}, the atom a defined by H satisfies a C E({S;}) iff
a C E1({S;}) or a C E,({S;}), iff the truth assignment defined by
H makes L(E1({B;})) or L(E;({B;})) true, iff it makes L(E({B;})) true.
The argument is similar for intersections and complementations.
(Note that the argument in this proof can be applied to each point
in a individually as well, which constitutes a proof that these sets
really are indivisible.) ®

Corollary 6. Let E{({A;}) and E,({A;}) be two finitely long set
theoretic expressions of sets from {A4, ..., Ay} that define the same
set. Then for any set U with subsets {S1, . . ., S,} generating an algebra
@, E1({S;}) and E;({S;}) define the same set as well.

Proof. Since every set in @ is a finite union of atoms, to establish
that E{({S;}) = E>({S;}) we need only show, by Lemma 5, that for
every nonempty atom defined by H C {1, ..., n}, the associated
assignment of truth values to n Boolean variables By, . . ., B, makes
L(E1({B;})) true iff it makes L(E,({B;})) true. Observe that for every
H < {1,...,n}, the corresponding atom ();cy Ai N [icye A is
comprised of the point with 1’s in its indices i € H and 0’s in the
other indices, and so all atoms of A4 are nonempty. The condition
therefore to establish E; ({A;}) = E2({A;}) is at least as strong as the
condition required to establish E; ({S;}) = E2({S;}). ®

Now we can prove the main theorem of this section.

Theorem 7. Let ¥ C {0, 1}" and let F({A;}) be a set theoretic ex-
pression of finitely many unions, intersections and complementations
of sets from {Aq, ..., A,} that equals ¥. Let @ = (U, £) be any al-
gebra, and let & be any probability measure on Q. Then x € [0, 1]"
belongs to Conv(¥) if we can find sets S; € £, i = 1,...,n, with
x; = &£(S;) for each i, and such that £ (F({S;})) = 1.

Proof. The subalgebra @° of @ on U generated by {S;} is also an
algebra, and £ remains a probability measure on @°. We claim that
if we define x by x (E({Ai})) = &(E({S;})) for every set theoretic
expression E, then yx is a probability measure on +. To prove the
claim we must first show that yx is a valid set function, i.e. it assigns
a single value to every set in #. It is easy to see that x assigns
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