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a b s t r a c t

We study the mixing time of the Dikin walk in a polytope—a random walk based on the log-barrier from
the interior point method literature. This walk, and a close variant, were studied by Narayanan (2016)
and Kannan–Narayanan (2012). Bounds on its mixing time are important for algorithms for sampling and
optimization over polytopes. Here, we provide a simple proof of their result that this randomwalk mixes
in time O(mn) for an n-dimensional polytope described usingm inequalities.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Sampling a point from the uniform distribution on a polytope
K ⊆ Rn is an extensively-studied problem and is a crucial
ingredient in several computational tasks involving convex bodies.
Towards this, typically, one sets up an ergodic and reversible
random walk inside K whose stationary distribution is uniform
over K . Themixing time of such awalk determines its efficacy, and,
in turn, depends on the isoperimetric constant of K with respect
to the transition function of the walk. Starting with the influential
work of Dyer et al. [3], there has been a long line of work on faster
and faster algorithms for generating an approximately uniform
point from a convex body. Moreover, since convex bodies show
up in a variety of areas, there is a wide body of work connecting
random walks and isoperimetry in convex bodies to several areas
in mathematics and optimization.

One such important connection to the interior point method
literaturewas presented in theworks of Kannan andNarayanan [6]
and Narayanan [9] who proposed the Dikin walk in a polytope.
Roughly, the uniform version of the Dikin walk, considered by [6],
when at a point x ∈ K , computes the Dikin ellipsoid at x, and
moves to a random point in it after a suitable Metropolis filter. The
Metropolis step ensures that the walk is ergodic and reversible.
The Gaussian version of the Dikin walk, considered by [9], picks
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the new point from a Gaussian distribution centered at x with its
covariance given by the Dikin ellipsoid at x, and applies a suitable
Metropolis filter. The Dikin ellipsoid at a point x is the ellipsoid
described by the Hessian of the log-barrier function at x. It was
introduced by Dikin in the first interior point method for linear
programming [2].

Several virtues of the Dikin ellipsoid (see [10,11,7]) were used
by [6,9] to prove that the mixing time of the Dikin walk is O(mn)
starting from a warm start, when K is described by m inequality
constraints. Recall that a distribution over K is said to be a warm
start if its density is bounded from above by a constant relative to
the uniform distribution on K . Roughly, the proof (for either walk)
consists of two parts: (1) an isoperimetric inequality, proved by
Lovász [8], for convex bodies in terms of a distance introduced
by Hilbert, and (2) a bound on the changes in the sampling
distributions of the Dikin walk in terms of the Hilbert distance. The
bound in (2) was the key technical contribution of [6,9] towards
establishing themixing timeof theDikinwalk.Wepresent a simple
proof of this bound for the Gaussian Dikin walk implying that
it mixes in time O(mn). Our proof uses well-known facts about
Gaussians, and concentration of Gaussian polynomials.

1.1. Dikin walk on polytopes

Suppose K ⊆ Rn is a bounded polytope with a non-empty
interior, described by m inequalities, a⊤

i x ≥ bi, for i ∈ [m]. We use
the notation x ∈ K to denote that x is in the interior of K . The log-
barrier function forK at x ∈ K is F(x) := −


i∈[m]

log(a⊤

i x−bi). Let
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H(x) denote the Hessian of F at x, i.e.,H(x) :=


i∈[m]

1
(a⊤i x−bi)2

aia⊤

i .

For all x ∈ K , H(x) is a positive definite matrix, and defines the
local norm at x, denoted ∥·∥x, as ∥v∥

2
x := v⊤H(x)v. The ellipsoid

{z : ∥z − x∥x ≤ 1} is known as the Dikin ellipsoid at x.
Fromapoint x ∈ K , the next point z in theDikinwalk is sampled

from the Dikin ellipsoid at x. The uniform Dikin walk, considered
by [6], sampled the new point z from the uniform distribution in
this ellipsoid. In the Gaussian Dikin walk, considered by [9], z is
sampled from gx, a multivariate Gaussian distribution centered at
xwith covariancematrix r2

n H(x)−1, where r is a constant. Thus, the
density of the distribution is given by

gx(z) =


detH(x)

 n
2πr2

n/2

· exp

−

n
2r2

· ∥z − x∥2
x


.

Equivalently, the next point z is given by

z = x +
r

√
n

(H(x))−1/2 g,

where g is an n-dimensional vector with each coordinate of g
sampled as an independent standard Gaussian N (0, 1).

In order to convert this into a random walk that stays inside K ,
with its stationary distribution as the uniform distribution on K ,
we apply the Metropolis filter to obtain the transition probability
density px of the Gaussian Dikin walk: ∀z ≠ x, if z ∈ K , px(z) =

min{gx(z), gz(x)} (the walk stays at x with the remaining
probability).

1.2. Hilbert metric, isoperimetry, and mixing time

We introduce the distance function which plays an important
role in establishing the mixing time of the Dikin walk. Given two
points x, y ∈ K , let p, q be the end points of the chord in K passing
through x, y, such that the points lie in the order p, x, y, q. We
define σ(x, y) :=

|xy| |pq|
|px| |qy| , where |xy| denotes the length of the line

segment xy. log(1 + σ(x, y)) is a metric on K , known as Hilbert
metric.

Lovász proved the following theorem for any random walk on
K : Suppose for any two initial points x, y ∈ K that are close in
σ distance, the statistical distance of the distributions after one
step of the walk each from x and y, is bounded away from 1. Then,
the lazy version of the randomwalk (where we stay at the current
point with probability 1/2 at each step) mixes rapidly.

Theorem 1 (Lovász [8]). Consider a reversible randomwalk in K with
its stationary distribution being uniform on K . Suppose ∃∆ > 0 such
that for all x, y ∈ K with σ(x, y) ≤ ∆, we have

px − py

1 ≤ 1 −

Ω(1), where px denotes the distribution after one step of the random
walk from x. Then, after O(∆−2) steps, the lazy version of the walk
from a warm start is within 1/4 total variation distance from the
uniform distribution on K .

Kannan and Narayanan proved that the transition function of the
uniform Dikin walk, px, for x ∈ int(K), satisfies the hypothesis
of the theorem above with ∆ = Ω


1

√
mn


, thus implying that it

mixes in O(mn) steps from a warm start. An analogous result for
the Gaussian Dikin walk is implicit in the work of Narayanan.
Our main contribution is an alternative and simple proof of their
main technical contributions. In particular, we prove the following
theorem.

Theorem 2. Let ε ∈ (0, 1/2]. For the Gaussian Dikin walk on K with
r ≤

ε
400 (log

200
ε

)−3/2, for any two points x, y ∈ K such that
∥x − y∥x ≤

r
√
n , we have

px − py

1 ≤ ε.

In order to use this theorem along with Theorem 1 to obtain
the claimed mixing time bound, one needs a simple fact that, for
any x, y in a polytope K , which is described using m inequalities,
σ(x, y) ≥

1
√
m ∥x − y∥x. A proof of this fact is given in Appendix;

see Lemma 9.
The following two lemmas are themain ingredients in the proof

of Theorem 2: (1) If two points x, y are close in the local norm, i.e.,
∥x − y∥x ≤

r
√
n , then the two Gaussian distributions gx and gy are

close in statistical distance. (2) If r is small enough (as a function of
ε), then for all x, px and gx are ε-close in statistical distance.

Lemma 3. Let r ≤ 1, and c ≥ 0 be such that c ≤ min{r, 1/3}. Let
x, y ∈ K. If ∥x − y∥x ≤

c
√
n , then

gx − gy

1 ≤ 3c.

This lemma relies on awell-known fact about the Kullback–Leibler
divergence between two multivariate Gaussian distributions, and
Pinsker’s inequality that bounds the statistical distance between
two distributions in terms of their divergence.

Lemma 4. Given ε ∈ [0, 1/2], for r ≤
ε

100 (log
50
ε
)−3/2, we have

∥px − gx∥1 ≤ ε.

This lemma, which shows that the Metropolis filter does not
change the distribution much, relies on a result on the concen-
tration of Gaussian polynomials, proved using hypercontractivity.
Given the above lemmas, Theorem 2 follows by applying triangle
inequality.

2. Statistical distance between Gaussians and the local norm

In this section, we present a proof of Lemma 3 that bounds the
statistical distance between gx and gy for two points x, y that are
close in the local norm. We need the following well-known fact
about the Kullback–Leibler divergence between two multivariate
Gaussian distributions.

Fact 5. Let G1 = N (µ1, Σ1) and G2 = N (µ2, Σ2) be two
n-dimensional Gaussian distributions. Then,

DKL(G2 ∥ G1) =
1
2


Tr

Σ−1

1 Σ2

− n + log

detΣ1

detΣ2

+ (µ1 − µ2)
⊤Σ−1

1 (µ1 − µ2)


,

where DKL denotes the Kullback–Leibler divergence

DKL(P ∥ Q ) =


log

P(x)
Q (x)

dP(x).

In order to use this theorem, we have to bound the eigenvalues of
H(x)H(y)−1. For x, y that are close in the local norm, this follows
since H(x) ≈ H(y).

Proof of Lemma 3. From the assumption, we have,

c2

n
≥ ∥x − y∥2

x =


i∈[m]

(a⊤

i (x − y))2

(a⊤

i x − bi)2
≥ max

i∈[m]

(a⊤

i (x − y))2

(a⊤

i x − bi)2
.

Thus, for all i ∈ [m], we have
1 −

c
√
n


(a⊤

i x − bi) ≤ (a⊤

i y − bi) ≤


1 +

c
√
n


(a⊤

i x − bi).

By the definition of H , we get,
1 −

c
√
n

2

H(y) ≼ H(x) ≼


1 +

c
√
n

2

H(y).



Download English Version:

https://daneshyari.com/en/article/1142029

Download Persian Version:

https://daneshyari.com/article/1142029

Daneshyari.com

https://daneshyari.com/en/article/1142029
https://daneshyari.com/article/1142029
https://daneshyari.com

