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a b s t r a c t

In this paper we study the inefficiency ratio of stable equilibria in load balancing games introduced by
Asadpour and Saberi (2009). We prove tighter lower and upper bounds of 7/6 and 4/3, respectively. This
improves over the best known bounds for the problem (19/18 and 3/2, respectively). Equivalently, the
results apply to the question of how well the optimum for the L2-norm can approximate the L∞-norm
(makespan) in identical machines scheduling.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Load balancing problems are classical optimization problems
which are also actively studied in the context of games, where
jobs are owned by selfish but rational players. These games
are prototypical of resource allocation problems in which users
(players) do not act altruistically, therefore leading the system
to suboptimal configurations. Naturally, one can consider the
social optimum as the allocation minimizing the makespan, that
is, the maximum load over all machines (a classical measure of
efficiency). In contrast, in the game-theoretic setting, each player
strives to optimize the cost of her own job only. This will typically
result in a so-calledNash equilibrium, that is, an allocation in which
no player can benefit bymoving her job to anothermachine. In this
work we consider pure Nash equilibria, that is, configurations in
which each player chooses one strategy and unilateral deviations
are not beneficial. In general, games may also possess mixed
Nash equilibria in which players choose strategies according to
a probability distribution. The inefficiency of Nash equilibria is
a central topic in algorithmic game theory and it measures how
much selfishness can impede optimization.

Asadpour and Saberi [3] introduced and studied the inefficiency
ratio of stable equilibria (IRSE) in several games, including load
balancing ones (see Section 2). This notion quantifies the efficiency
loss in games when players play certain noisy best-response
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dynamics (see Section 1.2). For load balancing games, the IRSE has
another very simple and natural interpretation (which is also of
independent interest and studied earlier):

Are the allocations minimizing the L2-norm (sum of the squares
of the machine loads) also sufficiently good for minimizing the
L∞-norm (makespan)?

Intuitively, while the social cost is measured by the L∞-norm
(makespan), the players collectively minimize the L2-norm (the
potential of the game). Therefore, the IRSE on load balancing
games is equal to some value c if every allocation minimizing
the L2-norm is automatically a c-approximation for the L∞-norm,
i.e., the makespan of this allocation is at most c-times the optimal
makespan. An exact bound on the IRSE is not known, as opposed
to other measures related to the inefficiency of equilibria (see
Section 1.2). Asadpour and Saberi [3] proved an upper bound of
3/2 on IRSE and observed that an example in Alon et al. [1] implies
a lower bound on IRSE of 19/18.

1.1. Our contribution

In this work we improve both the previous upper and lower
bounds on the IRSE on load balancing games:
• In Section 3 we show an improved lower bound of 7/6. While

the previous lower bound from Alon et al. [1] is obtained by a
simple instance with 3 machines and 6 jobs, our result is based
on a family of instances that dependon thenumber ofmachines.
Notably, our construction improves the previous lower bound
already for threemachines to 13/12. As thenumber ofmachines
grows, the lower bound tends to 7/6.
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• In Section 4 we improve the upper bound to 4/3. Intuitively
speaking, the proof consists in showing that in every allocation
whose cost is more than 4/3 the optimal makespan, we can
redistribute the jobs in a way that reduces the potential, i.e., the
L2-norm. This is the same argument of Asadpour and Saberi [3],
and our technical contribution is to show that there are two
ways to ‘‘reshuffle’’ the jobs, so that one of them decreases the
potential.

As mentioned above, these results can be restated by saying that
every job allocation minimizing the L2-norm guarantees a 4/3
approximation for the makespan, while in some instances the
optimum for the L2-norm has makespan at least 7/6 the optimal
makespan. Closing the gap between the upper and the lower bound
remains an open question,whichwediscuss at the end of Section 4.
In the next section, we discuss further relation with prior work,
including studies on the quality of equilibria in games.

1.2. Significance of the results and related work

The inefficiency of Nash equilibria is often measured through
two classical notions: the price of anarchy (PoA) introduced by
Koutsoupias and Papadimitriou [9] for load balancing games on
related machines, and the price of stability (PoS) introduced in
Anshelevich et al. [2], which compare respectively the worst and
the best Nash equilibrium to the social optimum. In some cases,
these notions can be considered too extreme as they may include
‘‘unrealistic’’ equilibria.

The IRSE [3] studies the quality of equilibria selected by certain
noisy best-response dynamics [4]. Intuitively, these dynamics will
most likely rest on pure Nash equilibriaminimizing the potential of
the game, and the IRSE canbe seen as theprice of anarchy restricted
to these selected equilibria. The IRSE is also known in the literature
under the name of potential optimal PoA by Kawase andMakino [8],
who also considered the analogous potential optimal PoS. Correa
et al. [5] studied earlier potential optimal PoA in the capacitated
network routing model, though under a different name. In load
balancing games (and several others) we have PoS < IRSE < PoA,
which in a sense tells that the PoA and the PoS are either too
pessimistic or too optimistic. Specifically, on m machines PoA =
2 −

1
m+1


[6,10], PoS = 1 [10], while IRSE is between 19/18

and 3/2 [3]. The latter bounds are strengthened in the present
paper to 7/6 ≤ IRSE ≤ 4/3. This means that players can easily
compute a 4/3 (or better) approximation of the optimum via these
simple dynamics, but also that in some instances the dynamics
is unlikely to choose optimal or nearly optimal solutions either
(namely, within a factor smaller than 7/6).

The upper bound 4/3 also suggests an intriguing comparison
with the study of sequential PoA by Hassin and Yovel [7] for these
games: there, players are far from myopic and the equilibrium is
meant on an extensive form game in which players are able to
reason about future moves of following players. It is an interesting
question which of these two dynamics give a better makespan in
the end.

2. Preliminaries

In load balancing there are n jobs with weightsw1, . . . , wn that
we want to put on m identical machines (each job is allocated to
one machine). The job allocation determines the load lj of each
machine j, that is the sum of the jobs weights that are allocated to
this machine. The goal is to find an allocation that has the lowest
possible makespan, that is, the maximum load over all machines.

In load balancing games each job is a player who can choose
any of the m possible machines. The cost for player i is simply
the load of the machine chosen by this player, and naturally each
player aims atminimizing her own cost. The strategies of all players

Fig. 1. When a swap of bundles of jobs reduces the potential.

specify a job allocation (in the game theoretic terminology this is
the strategy profile).

An allocation minimizing the makespan is called a social
optimum, and its makespan is called a social optimum makespan.
The potential associated to an allocation is the sum of the squares
of the corresponding machine loads, l12 + · · · + lm2 where lj is the
load of machine j at this allocation. An allocation minimizing the
potential function is called a potential optimal allocation or simply
potential optimum.

It is well known that load balancing games are weighted
potential games with the above potential function. This means
that all pure Nash equilibria (allocations where no player can
unilaterally improve moving to another machine) are actually
‘locally optimal’ for the potential (a single job move cannot reduce
the potential). Asadpour and Saberi [3] introduced and studied
the inefficiency ratio of stable equilibria (IRSE), which is the largest
(among all the instances of a game) ratio between the worst
makespan of a potential optimal allocation and the social optimum
makespan.

Potential optimal allocations satisfy the following condition
(see Fig. 1). Split the total load of each machine into two bundles
of jobs, that is, lj = xj + yj where xj is the sum of the weights of
a (possibly empty) subset of jobs allocated to j. If two machines i
and j satisfy xi < xj, then yi ≥ yj for otherwise swapping xi with
xj reduces the potential. Pure Nash equilibria satisfy the weaker
condition that a single job k in machine i does not improve if
moving to another machine j, that is, li − wk ≤ lj.

3. Improved lower bound

In this section we strengthen the 19/18 lower bound on IRSE
in [3,1]. The idea of the proof is to construct an instance in which
the potential optimum is obtained when one single machine has
‘‘higher’’ load, and all others have the same load (Fig. 2 left), while
the optimalmakespan does the opposite: onemachine has ‘‘lower’’
load and all others have the same higher load (Fig. 2 right).

Theorem 3.1. IRSE in load balancing games is at least 7/6.

Proof. Consider the instance in Fig. 2 where m = k + 1 ≥ 3,
n = 2k + 2 and the weights of jobs are k, k, k, k + 1, k + 1, . . . ,
2k− 1, 2k− 1, (5k− 1)/2. We prove that the allocation on the left
(see figure) minimizes the potential function, while the one on the
right has optimal makespan, thus implying

IRSE ≥
(7k − 1)/2

3k
=

7m − 8
6m − 6

which tends to 7/6 as m goes to infinity. First note that the
potential in both allocations is the same. Consider any job
allocation and without loss of generality assume that the job with
the largest weight is on machine 1. If we fix a load on machine
1, then any job allocation which balances the load on the other
machines minimizes the potential (among all allocations with this
fixed load on machine 1). Therefore, if the largest job is alone on
machine 1, then the potential is minimized in the social optimum
case, while if it is located on machine 1 together with the job of
smallest weight, then the potential is minimized when the job
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