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a b s t r a c t

This paper investigates a mean–variance portfolio selection problem with regime switching under the
constraint of short-selling being prohibited. By applying the dynamic programming approach, a system of
Hamilton–Jacobi–Bellman (HJB) equations is constructed. Recognizing the features of the optimal wealth
process, the optimal feedback control and verification theorem are obtained. The efficient portfolio and
efficient frontier are explicitly derived through the Lagrange multiplier approach.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Portfolio selection concerns how to choose the optimal propor-
tions among a basket of securities in the financial market. In order
to compare different allocation strategies, some criterion must be
specified in the first place. Markowitz [4] proposed the first quan-
tifiable measure of ‘‘mean–variance’’ by considering the trade-off
between the expected return and variance of a portfolio in a sin-
gle period model. Owing to mathematical difficulty, Markowitz’s
work has not been generalized to the multi-period case until sev-
eral decades later when Li and Ng [2] firstly formulated and solved
a multi-period mean–variance portfolio selection problem. In the
continuous-time setting, Zhou and Li [8] obtained the efficient
portfolio and efficient frontier in closed form by using embedding
techniques.

In order to demonstrate the random nature of the financial
market, there has been an increasing interest in regime switch-
ing models in which some of the finance parameters, such as
stock appreciation rates and volatilities, are modulated by a con-
tinuous time Markov chain. See Sotomayor and Cadenillas [6],
Zariphopoulou [7]. The regime-switching concept was originally
applied to mean–variance portfolio selection by Zhou and Yin [9].
Chen et al. [1] extended their work by considering an uncontrol-
lable liability process modelled by aMarkov-modulated geometric
Brownian motion.
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Most of the existing literatures assume an ideal financial mar-
ket where there is no limitation on short selling stocks. This is
mainly due to mathematical tractability. Shorting stocks, how-
ever, is often restricted in the real world either by financial
regulations or its trading cost. Thus it is more reasonable to incor-
porate shorting constraints into mean–variance modelling. One of
these papers is by Li et al. [3] which prohibited short sale of stocks.
Nevertheless, by assuming all the coefficients are deterministic,
their model failed to capture the inherent uncertainty of the stock
price evolution.

In this paper, we study a mean–variance portfolio selection
problem with regime switching under no-shorting constraints.
Under the stochastic linear-quadratic (LQ) control framework,
the completion of square technique is not useful when control
variables are constrained. To overcome this difficulty, Li et al. [3]
constructed a continuous viscosity solution via two Riccati
equations. However, the verification theorem is hard to prove
when using their method. We address this theoretical problem by
making use of the special features of the HJB equation and optimal
wealth process in our model. In fact, the whole space {(t, x); t ≥

0, x ∈ R} can be split into two areas, and within each area there
is a smooth solution for the HJB equation whereas smoothness
does not hold on the boundary. Fortunately, the optimal wealth
process will always stay in one area when the interest rate is
deterministic, which makes it possible to provide a verification
theorem by merely applying the Itô formula.

The rest of the paper is organized as follows. Section 2 formu-
lates amean–variance portfolio selection problem. In Section 3, the
Lagrange multiplier is introduced, and an unconstrained problem
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is solved by the stochastic dynamic programming approach. Sec-
tion 4 derives the efficient feedback portfolio and efficient frontier.
Section 5 concludes this paper.

2. Problem formulation

Throughout the paper, we use the following notations. Let
(Ω, F , P) be a complete probability space defined on which
W (t) = (W1(t), . . . ,Wm(t))′ is am-dimensional standard Brown-
ian motion. Let α(t) be a continuous time stationary Markov chain
taking values in a finite state space M = {1, 2, . . . , l} with gen-
erator matrix Q = (qij)l×l. W (t) and α(t) are independent of each
other. Let {Ft}t≥0 be the filtration generated byW (t) andα(t) aug-
mented by null sets contained in F . Define Rn

+
as the set of all n-

dimensional nonnegative vectors. The transpose of any matrix A is
denoted by A′. The norm ∥ · ∥ is defined as ∥A∥ =

m
i=1

n
j=1 a

2
ij,

where A = (aij)m×n.
Suppose the financialmarket consists of n risky assets driven by

Markov-modulated geometric Brownian motions. Let pi(t) denote
the price of the ith risky asset which satisfies the following
stochastic differential equation (SDE)

dpi(t) = pi(t)


bi(t, α(t))dt +

m
k=1

σik(t, α(t))dWk(t)


,

i = 1, 2, . . . , n,

where bi(t, α(t)) and σik(t, α(t)) represent the appreciation rate
and volatility of pi(t) respectively. There is one risk free asset
whose price p0(t) is modelled by an ordinary differential equation
(ODE)

dp0(t) = r(t)p0(t)dt,

where r(t) > 0 is the instantaneous interest rate independent of
the market regimes α(t).

Consider an investor with an initial wealth x0. Over a finite time
horizon T > 0, the above n + 1 assets are traded continuously
without any transaction cost. The investor’s wealth process x(t)
may evolve as
dx(t) =


r(t)x(t) + B(t, α(t))′u(t)


dt + u(t)′σ(t, α(t))dW (t),

x(0) = x0, α(0) = i0,
(2.1)

where i0 is the initial market regime, and the n-dimensional vector
process u(· ) is called a portfolio of the investor with each element
representing the market value of each risky asset held by the
investor. B(t, α(t)) and σ(t, α(t)) are defined as

B(t, α(t)) =


b1(t, α(t)) − r(t), . . . , bn(t, α(t)) − r(t)

′

,

σ (t, α(t)) =


σij(t, α(t))


n×m

.

We assume that the volatility matrix σ(t, i) satisfies the non-
degeneracy condition

Σ(t, i) := σ(t, i)σ (t, i)′ ≥ δI, ∀t ∈ [0, T ], i ∈ M,

where δ is some positive real number, and I is the n × n identity
matrix.

Assumption 2.1. r(·), B(·, ·), Σ(·, ·) are Borel-measurable and
uniformly bounded.

Assumption 2.2. bk(t, i) > r(t) for k = 1, 2, . . . , n, t ∈ [0, T ],
i ∈ M.

Definition 2.1. A portfolio u(· ) is called admissible if u(· ) is a
nonnegative square-integrable process. Let U denote the set of all
admissible portfolios.

Proposition 2.1. If u(· ) ∈ U, then the correspondingwealth process
x(t) satisfies the integrability condition E max0≤t≤T x(t)2 < ∞.

Proof. If u(· ) ∈ U , then SDE (2.1) admits a unique strong solution

x(t) = e
 t
0 r(s)ds


x0 +

 t

0
e−

 s
0 r(v)dv

×

B(s, α(s))′u(s)ds + u(s)′σ(s, α(s))dW (s)

 
.

Hence,

x2(t) ≤ A
 t

0
B(s, α(s))′u(s)ds

2

+ C
 t

0
u(s)′σ(s, α(s))dW (s)

2
+ D

≤ A
 T

0


B(s, α(s))′u(s)

2ds
+ C


max
0≤t≤T

 t

0
u(s)′σ(s, α(s))dW (s)

2
+ D,

where A, C,D are suitable positive constants. Since u(·) is
admissible, the first integral above has a finite expectation. For the
second one, applying Doob’s Inequality yields

E

max
0≤t≤T

 t

0
u(s)′σ(s, α(s))dW (s)

2

≤ 4E
 T

0
u(s)′σ(s, α(s))dW (s)

2

= 4E
 T

0
∥u(s)′σ(s, α(s))∥2ds < ∞.

This completes the proof. �

The investor’s objective is to find an admissible control u(· )
such that Var(x(T )) is minimized provided Ex(T ) = z for any given
expected return z ∈ R+. This stochastic control problem can be
formulated as follows
minimize Var(x(T ))
subject to Ex(T ) = z, u(· ) ∈ U .

(2.2)

When z = x0e
 T
0 r(s)ds, problem (2.2) becomes trivial. In fact, the in-

vestor can achieve the expected return of x0e
 T
0 r(s)ds without uncer-

tainties by only investing in the risk free asset. Under this scenario,
the optimal portfolio is u(t) ≡ 0. Therefore, in the following sec-
tions, we only investigate the nontrivial casewhen z is greater than
x0e

 T
0 r(s)ds. For any z > x0e

 T
0 r(s)ds, the optimal portfolio is called

an efficient portfolio and all the pairs (z,min Var(x(T ))) constitute
the efficient frontier.

3. Decomposition of problem (2.2)

3.1. Lagrange multiplier

The mean–variance problem (2.2) is a convex minimization
problem with a linear equality constraint, which could be well
addressed by applying the technique of ‘‘Lagrange multiplier’’ in
the following lemma.



Download English Version:

https://daneshyari.com/en/article/1142035

Download Persian Version:

https://daneshyari.com/article/1142035

Daneshyari.com

https://daneshyari.com/en/article/1142035
https://daneshyari.com/article/1142035
https://daneshyari.com

