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We present a +/e/(,/e — 1)-approximation algorithm for the nonpreemptive scheduling problem to
minimize the total weighted completion time of jobs on a single machine subject to release dates and
precedence constraints. The previously best known approximation algorithm dates back to 1997; its
performance guarantee can be made arbitrarily close to the Euler constant e (Schulz and Skutella, 1997).
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1. Introduction

We consider the following classical machine scheduling prob-
lem denoted by 1| rj, prec | > w;G; in the standard classification
scheme of Graham, Lawler, Lenstra, and Rinnooy Kan [12]. We are
given a set of jobs N = {1, 2, ..., n} and for every jobj € N a pro-
cessing time p; > 0, a release date r; > 0, and a weight w; > 0.
The jobsj € N need to be processed during non-overlapping time
intervals of length p;, and j’s processing must not start before its
release date r;. Moreover, there are precedence constraints given
by a partial order “<” on N where j < k means that job j must be
completed before job k may be started, that is, j's processing inter-
val must precede k’s. We may therefore without loss of generality
assume throughout the paper thatj < k implies r; < ry. The objec-
tive is to minimize the total weighted completion time } .y w;G
where G denotes the first point in time at which j’s processing is
completed.

Complexity. Even for unit job weights, the special cases of the prob-
lem without non-trivial release dates 1| prec | )_ G; (i.e., rj = 0 for
allj € N)orwithout precedence constraints 1| rj | Y C; are strongly
NP-hard; see, e.g., [8, problem SS4]. In preemptive scheduling, the
processing of a job may be repeatedly interrupted and resumed at
a later point in time. In the absence of precedence constraints, the
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problem with unit job weights 1|r;, pmtn|>_ C; can be solved in
polynomial time [3], but for arbitrary weights 1| r;, pmtn | > w;G
is strongly NP-hard. Without non-trivial release dates preemp-
tions are superfluous such that 1| prec, pmtn| ) G is equivalent
to 1| prec | ) Gj and thus strongly NP-hard.

List scheduling. Before dipping into the rich history of approxima-
tion algorithms for these scheduling problems, we first discuss the
most important algorithmic ingredient for both heuristic and ex-
act solutions: list scheduling. Consider a list representing a total or-
der on the set of jobs N, extending the given partial order “<”. A
straightforward way to construct a feasible schedule is to process
the jobs in the given order as early as possible with respect to re-
lease dates. A schedule constructed in this way is a list schedule.

Depending on the given list and the release dates of jobs, the
machine might remain idle when one job is completed but the
next job in the list is not yet released. On the other hand, if job
preemptions are allowed, it is certainly not advisable to leave the
machine idle while another job at a later position in the list is
already available (released) and waiting. Instead, we better start
this job and preempt it from the machine as soon as the next job
in the list is released. In preemptive list scheduling we process at
any point in time the first available job in the list. The resulting
preemptive schedule is feasible (as j < k implies r; < ri) and is
called preemptive list schedule.

Known techniques and results. There is a vast literature on approxi-
mation algorithms for the various scheduling problems mentioned
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above. Here we only mention those results that are particularly
relevant in the context of this paper and refer to Chekuri and
Khanna [5] for a more comprehensive overview. Various kinds
of linear programming (LP) relaxations have proved to be use-
ful in designing approximation algorithms. One of the simplest
and most intuitive classes of LP relaxations is based on comple-
tion time variables only. These LP relaxations were introduced by
Queyranne [16] and first used in the context of approximation
algorithms by Schulz [17], who presents a 2-approximation algo-
rithm for the problem 1| prec | ) w;C; and a 3-approximation al-
gorithm for 1| r;, prec|)_ w;G; see also Hall, Schulz, Shmoys, and
Wein [13]. These algorithms compute an optimal LP solution and
then do list scheduling in order of increasing LP completion times.
Moreover, Hall et al. [13] show that preemptive list scheduling in
order of increasing LP completion times is a 2-approximation algo-
rithm for 1| rj, prec, pmtn| )" w;C.

Phillips, Stein, and Wein [15] and Hall, Shmoys, and Wein [14]
introduce the idea of list scheduling in order of so-called «-points
to convert preemptive schedules to nonpreemptive ones. For o €
(0, 1], the a-point of a job with respect to a preemptive sched-
ule is the first point in time when an «-fraction of the job has
been completed. Goemans [10] and Chekuri, Motwani, Natara-
jan, and Stein [6] show that choosing « randomly leads to better
results. In particular, Chekuri et al. [6] present an e/(e — 1)-
approximation algorithm for 1| r; | > G; by starting from an opti-
mal preemptive schedule. Goemans [ 10] and Goemans, Queyranne,
Schulz, Skutella, and Wang [11] give approximation results for the
more general weighted problem 1| r; |  w;C; based on a preemp-
tive schedule that is an optimal solution to an LP relaxation in time-
indexed variables. Similarly, Schulz and Skutella [18] give an (e +
£)-approximation algorithm for 1| rj, prec | > w;C; for any & > 0.

Bansal and Khot prove in a recent landmark paper [4] that
there is no (2 — &)-approximation algorithm for 1| prec | )_ w;G;,
assuming a stronger version of the Unique Games Conjecture.
Ambiihl, Mastrolilli, Mutsanas, and Svensson [2], based on earlier
work of Correa and Schulz [7] and Ambiihl and Mastrolilli [1],
prove an interesting relation between the approximability of
1| prec | ) w;C; and the vertex cover problem

Our contribution. We present a /e/(y/e — 1)-approximation algo-
rithm for the problem 1|rj, prec| )  w;C based on the following
two ingredients: (i) For the problem 1| 1;, prec, pmtn|)_ w;C; we
slightly strengthen the 2-approximation result of Hall et al. [13]
and show that preemptive list scheduling in order of increasing
LP completion times on a machine running at double speed yields
a schedule whose cost is at most the cost of an optimal schedule
on a regular machine; see Section 2. (ii) Modifying the analysis of
Chekuri et al. [6] we show how to turn the preemptive schedule
on the double speed machine into a nonpreemptive schedule on a
regular machine while increasing the objective function by at most
a factor of \/e/(y/e — 1); see Section 3. We conclude with a con-
jecture in Section 4.

2. Optimal preemptive schedules under resource augmenta-
tion

In this section we consider the preemptive single machine
scheduling problem with release dates, precedence constraints and
total weighted completion time objective 1| rj, prec, pmtn | > w;C;.
The best known approximation result for this problem is a 2-
approximation algorithm due to Hall et al. [ 13] that is based on an
LP relaxation in completion time variables originally introduced by
Queyranne [16] and later refined by Goemans [9,10] for problems
involving release dates. Let S C N denote a set of jobs and define

p(S) = ij and  1in(S) = r]rélsn 1.
jes

The LP relaxation in completion time variables G, j € N, looks as
follows:

min E w;G

JeN
st. G <C forallj <k, (1)
1
5 > " piG = rin(S) + 1p(S) forallS C N. (2)
Jjes

Notice that constraints (1) could be strengthened to C; + px < Cy,
which is however not necessary for our purposes. Goemans [10]
argues that constraints (2) hold for a feasible schedule, even if
(G)jen denotes the vector of mean busy times of jobs instead of
the larger completion times. Moreover, despite their exponential
number, these constraints can be separated in polynomial time by
efficient submodular function minimization [9]. Thus, an optimal
solution C* to the LP relaxation can be found in polynomial time
and yields the LP lower bound } ;. w;C;* on the total weighted
completion time of an optimal preemptive schedule. Reindex the
set of jobs such that

(<G <---<Cf and (j<k=j<k). (3)

The second condition in (3) is necessary to ensure that the total
order of jobs by increasing indices extends the partial order
given by the precedence constraints; notice, that in an optimal LP
solution CJ* might be equal to C; for some pair of jobs with j < k.

Hall et al. [13] show that preemptive list scheduling according
to list (3) yields a feasible preemptive schedule with completion
times GG < 2-C*, j € N, and thus a 2-approximate solution. Exactly
the same anallysis implies a slightly stronger result in terms of
resource augmentation as we show in the next lemma. We imagine
a machine running at double speed such that each jobj € N needs
to be processed for p;/2 time units only.

Lemma 1. Preemptive list scheduling according to list (3) on a
machine running at double speed yields a feasible preemptive schedule
with completion times Cj/ < C]* forallj e N.

Proof. For a fixed k € N, let S denote the subset of jobs j < k such
that (i) Cj/ < (,, (ii) the preemptive list schedule does not leave the

double speed machine idle between times Cj/ and Cy, and (iii) only

jobs £ < k are being processed between times Cj/ and Cj. In
particular, k € S by definition.

Claim. The preemptive list schedule processes the set of jobs S without
interruption during the time interval I := [ryin(S), Gl

To prove the claim, first notice that the preemptive list schedule
never leaves the machine idle between the release and the
completion of any job, asj < himplies r; < r; such that no job will
ever have to wait for another job that is not yet released. Consider
ajobh € S with r, = ryin(S). As already mentioned, there is
no idle time within the time interval [ry, C;], and only jobs £ with
£ < h < k are being processed there. Moreover, due to (ii) there is
no idle time within the time interval [C;, ;] and only jobs £ with
¢ < kare being processed there due to (iii). As a consequence, there
is no idle time in [ and only jobs ¢ with ¢ < k are being processed
in I. Therefore, every job j with Cj/ € I satisfies conditions (i), (ii),
and (iii), and is thus contained in S. Finally, since any job ¢ that
the preemptive list schedule processes in I satisfies £ < k and is
therefore completed before job k in I, the claim follows.

The claim implies that C}, = rmin(S) + %p(S). Finally,

1
G = —— Y piG = rmin(S) + 1p(S) = G,
p(S) 4

where the first inequality holds as C;* < C; forj < kand the second
inequality follows by the LP constraints (2). O
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