
Operations Research Letters 44 (2016) 676–679

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

A 2.542-approximation for precedence constrained single machine
scheduling with release dates and total weighted completion time
objective
Martin Skutella
TU Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

a r t i c l e i n f o

Article history:
Received 15 March 2016
Received in revised form
23 July 2016
Accepted 24 July 2016
Available online 29 July 2016

Keywords:
Approximation algorithm
Machine scheduling
Precedence constraints
Total weighted completion time
LP relaxation

a b s t r a c t

We present a
√
e/(

√
e − 1)-approximation algorithm for the nonpreemptive scheduling problem to

minimize the total weighted completion time of jobs on a single machine subject to release dates and
precedence constraints. The previously best known approximation algorithm dates back to 1997; its
performance guarantee can be made arbitrarily close to the Euler constant e (Schulz and Skutella, 1997).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following classical machine scheduling prob-
lem denoted by 1| rj, prec |


wjCj in the standard classification

scheme of Graham, Lawler, Lenstra, and Rinnooy Kan [12]. We are
given a set of jobs N = {1, 2, . . . , n} and for every job j ∈ N a pro-
cessing time pj ≥ 0, a release date rj ≥ 0, and a weight wj ≥ 0.
The jobs j ∈ N need to be processed during non-overlapping time
intervals of length pj, and j’s processing must not start before its
release date rj. Moreover, there are precedence constraints given
by a partial order ‘‘≺’’ on N where j ≺ k means that job j must be
completed before job kmay be started, that is, j’s processing inter-
val must precede k’s. We may therefore without loss of generality
assume throughout the paper that j ≺ k implies rj ≤ rk. The objec-
tive is to minimize the total weighted completion time


j∈N wjCj

where Cj denotes the first point in time at which j’s processing is
completed.
Complexity. Even for unit job weights, the special cases of the prob-
lem without non-trivial release dates 1| prec |


Cj (i.e., rj = 0 for

all j ∈ N) orwithout precedence constraints 1| rj |


Cj are strongly
NP-hard; see, e.g., [8, problem SS4]. In preemptive scheduling, the
processing of a job may be repeatedly interrupted and resumed at
a later point in time. In the absence of precedence constraints, the

E-mail address:martin.skutella@tu-berlin.de.

problem with unit job weights 1| rj, pmtn |


Cj can be solved in
polynomial time [3], but for arbitrary weights 1| rj, pmtn |


wjCj

is strongly NP-hard. Without non-trivial release dates preemp-
tions are superfluous such that 1| prec, pmtn |


Cj is equivalent

to 1| prec |


Cj and thus strongly NP-hard.
List scheduling. Before dipping into the rich history of approxima-
tion algorithms for these scheduling problems, we first discuss the
most important algorithmic ingredient for both heuristic and ex-
act solutions: list scheduling. Consider a list representing a total or-
der on the set of jobs N , extending the given partial order ‘‘≺’’. A
straightforward way to construct a feasible schedule is to process
the jobs in the given order as early as possible with respect to re-
lease dates. A schedule constructed in this way is a list schedule.

Depending on the given list and the release dates of jobs, the
machine might remain idle when one job is completed but the
next job in the list is not yet released. On the other hand, if job
preemptions are allowed, it is certainly not advisable to leave the
machine idle while another job at a later position in the list is
already available (released) and waiting. Instead, we better start
this job and preempt it from the machine as soon as the next job
in the list is released. In preemptive list scheduling we process at
any point in time the first available job in the list. The resulting
preemptive schedule is feasible (as j ≺ k implies rj ≤ rk) and is
called preemptive list schedule.
Known techniques and results. There is a vast literature on approxi-
mation algorithms for the various scheduling problemsmentioned

http://dx.doi.org/10.1016/j.orl.2016.07.016
0167-6377/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2016.07.016
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2016.07.016&domain=pdf
mailto:martin.skutella@tu-berlin.de
http://dx.doi.org/10.1016/j.orl.2016.07.016

M. Skutella / Operations Research Letters 44 (2016) 676–679 677

above. Here we only mention those results that are particularly
relevant in the context of this paper and refer to Chekuri and
Khanna [5] for a more comprehensive overview. Various kinds
of linear programming (LP) relaxations have proved to be use-
ful in designing approximation algorithms. One of the simplest
and most intuitive classes of LP relaxations is based on comple-
tion time variables only. These LP relaxations were introduced by
Queyranne [16] and first used in the context of approximation
algorithms by Schulz [17], who presents a 2-approximation algo-
rithm for the problem 1| prec |


wjCj and a 3-approximation al-

gorithm for 1| rj, prec |


wjCj; see also Hall, Schulz, Shmoys, and
Wein [13]. These algorithms compute an optimal LP solution and
then do list scheduling in order of increasing LP completion times.
Moreover, Hall et al. [13] show that preemptive list scheduling in
order of increasing LP completion times is a 2-approximation algo-
rithm for 1| rj, prec, pmtn |


wjCj.

Phillips, Stein, and Wein [15] and Hall, Shmoys, and Wein [14]
introduce the idea of list scheduling in order of so-called α-points
to convert preemptive schedules to nonpreemptive ones. For α ∈

(0, 1], the α-point of a job with respect to a preemptive sched-
ule is the first point in time when an α-fraction of the job has
been completed. Goemans [10] and Chekuri, Motwani, Natara-
jan, and Stein [6] show that choosing α randomly leads to better
results. In particular, Chekuri et al. [6] present an e/(e − 1)-
approximation algorithm for 1| rj |


Cj by starting from an opti-

mal preemptive schedule. Goemans [10] andGoemans, Queyranne,
Schulz, Skutella, andWang [11] give approximation results for the
more general weighted problem 1| rj |


wjCj based on a preemp-

tive schedule that is an optimal solution to an LP relaxation in time-
indexed variables. Similarly, Schulz and Skutella [18] give an (e +

ε)-approximation algorithm for 1| rj, prec |


wjCj for any ε > 0.
Bansal and Khot prove in a recent landmark paper [4] that

there is no (2 − ε)-approximation algorithm for 1| prec |


wjCj,
assuming a stronger version of the Unique Games Conjecture.
Ambühl, Mastrolilli, Mutsanas, and Svensson [2], based on earlier
work of Correa and Schulz [7] and Ambühl and Mastrolilli [1],
prove an interesting relation between the approximability of
1| prec |


wjCj and the vertex cover problem

Our contribution. We present a
√
e/(

√
e − 1)-approximation algo-

rithm for the problem 1| rj, prec |


wjCj based on the following
two ingredients: (i) For the problem 1| rj, prec, pmtn |


wjCj we

slightly strengthen the 2-approximation result of Hall et al. [13]
and show that preemptive list scheduling in order of increasing
LP completion times on a machine running at double speed yields
a schedule whose cost is at most the cost of an optimal schedule
on a regular machine; see Section 2. (ii) Modifying the analysis of
Chekuri et al. [6] we show how to turn the preemptive schedule
on the double speed machine into a nonpreemptive schedule on a
regularmachinewhile increasing the objective function by atmost
a factor of

√
e/(

√
e − 1); see Section 3. We conclude with a con-

jecture in Section 4.

2. Optimal preemptive schedules under resource augmenta-
tion

In this section we consider the preemptive single machine
scheduling problemwith release dates, precedence constraints and
total weighted completion time objective 1| rj, prec, pmtn |


wjCj.

The best known approximation result for this problem is a 2-
approximation algorithm due to Hall et al. [13] that is based on an
LP relaxation in completion time variables originally introduced by
Queyranne [16] and later refined by Goemans [9,10] for problems
involving release dates. Let S ⊆ N denote a set of jobs and define

p(S) :=


j∈S

pj and rmin(S) := min
j∈S

rj.

The LP relaxation in completion time variables Cj, j ∈ N , looks as
follows:

min

j∈N

wjCj

s.t. Cj ≤ Ck for all j ≺ k, (1)
1

p(S)


j∈S

pjCj ≥ rmin(S) +
1
2p(S) for all S ⊆ N. (2)

Notice that constraints (1) could be strengthened to Cj + pk ≤ Ck,
which is however not necessary for our purposes. Goemans [10]
argues that constraints (2) hold for a feasible schedule, even if
(Cj)j∈N denotes the vector of mean busy times of jobs instead of
the larger completion times. Moreover, despite their exponential
number, these constraints can be separated in polynomial time by
efficient submodular function minimization [9]. Thus, an optimal
solution C∗ to the LP relaxation can be found in polynomial time
and yields the LP lower bound


j∈N wjC∗

j on the total weighted
completion time of an optimal preemptive schedule. Reindex the
set of jobs such that

C∗

1 ≤ C∗

2 ≤ · · · ≤ C∗

n and (j ≺ k ⇒ j < k). (3)

The second condition in (3) is necessary to ensure that the total
order of jobs by increasing indices extends the partial order
given by the precedence constraints; notice, that in an optimal LP
solution C∗

j might be equal to C∗

k for some pair of jobs with j ≺ k.
Hall et al. [13] show that preemptive list scheduling according

to list (3) yields a feasible preemptive schedule with completion
times Cj ≤ 2·C∗

j , j ∈ N , and thus a 2-approximate solution. Exactly
the same analysis implies a slightly stronger result in terms of
resource augmentation aswe show in the next lemma.We imagine
a machine running at double speed such that each job j ∈ N needs
to be processed for pj/2 time units only.

Lemma 1. Preemptive list scheduling according to list (3) on a
machine running at double speed yields a feasible preemptive schedule
with completion times C ′

j ≤ C∗

j for all j ∈ N.

Proof. For a fixed k ∈ N , let S denote the subset of jobs j ≤ k such
that (i) C ′

j ≤ C ′

k, (ii) the preemptive list schedule does not leave the
double speed machine idle between times C ′

j and C ′

k, and (iii) only
jobs ℓ ≤ k are being processed between times C ′

j and C ′

k. In
particular, k ∈ S by definition.

Claim. The preemptive list schedule processes the set of jobs S without
interruption during the time interval I := [rmin(S), C ′

k].

To prove the claim, first notice that the preemptive list schedule
never leaves the machine idle between the release and the
completion of any job, as j ≺ h implies rj ≤ rh such that no job will
ever have to wait for another job that is not yet released. Consider
a job h ∈ S with rh = rmin(S). As already mentioned, there is
no idle time within the time interval [rh, C ′

h], and only jobs ℓ with
ℓ ≤ h ≤ k are being processed there. Moreover, due to (ii) there is
no idle time within the time interval [C ′

h, C
′

k] and only jobs ℓ with
ℓ ≤ k are being processed there due to (iii). As a consequence, there
is no idle time in I and only jobs ℓ with ℓ ≤ k are being processed
in I . Therefore, every job j with C ′

j ∈ I satisfies conditions (i), (ii),
and (iii), and is thus contained in S. Finally, since any job ℓ that
the preemptive list schedule processes in I satisfies ℓ ≤ k and is
therefore completed before job k in I , the claim follows.

The claim implies that C ′

k = rmin(S) +
1
2p(S). Finally,

C∗

k ≥
1

p(S)


j∈S

pjC∗

j ≥ rmin(S) +
1
2p(S) = C ′

k,

where the first inequality holds as C∗

j ≤ C∗

k for j ≤ k and the second
inequality follows by the LP constraints (2). �

Download English Version:

https://daneshyari.com/en/article/1142039

Download Persian Version:

https://daneshyari.com/article/1142039

Daneshyari.com

https://daneshyari.com/en/article/1142039
https://daneshyari.com/article/1142039
https://daneshyari.com

