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a b s t r a c t

This paper discusses geometric programs with joint probabilistic constraints. When the stochastic pa-
rameters are normally distributed and independent of each other, we approximate the problem by using
piecewise linear functions, and transform the approximation problem into a convex geometric program.
We prove that this approximation method provides a lower bound. Then, we design a sequential convex
optimization algorithm to find an upper bound. Finally, numerical tests are carried out on a stochastic
shape optimization problem.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Geometric programming is an important topic in operations
research where the objective function and the constraints of the
corresponding optimization problems have a special form. Geo-
metric optimization has been studied for several decades, it was
introduced by Duffin et al. in the late 1960s [4]. Applications
of geometric programming can be found in several surveys pa-
pers, namely Ecker [6], Peterson [13] and Boyd et al. [1]. Numer-
ous practical problems can be formulated as geometric programs,
e.g., electrical circuit design problems [1], information theory [3],
queue proportional scheduling in fading broadcast channels [16],
mechanical engineering problems [18], economic and managerial
problems [11], nonlinear network problems [10]. A geometric pro-
gram can be formulated as

(GP) min
t

g0(t) s.t. gk(t) ≤ 1, k = 1, . . . , K , t ∈ RM
++

(1)

with

gk(t) =

i∈Ik

ci
M
j=1

t
aij
j , k = 0, . . . , K . (2)

Usually, ci
M

j=1 t
aij
j is called a monomial where ci need to be non-

negative and gk(t) is called a posynomial.Wedenote byQ the num-

∗ Corresponding author.
E-mail addresses: jia.liu@lri.fr (J. Liu), lisser@lri.fr (A. Lisser), zchen@xjtu.edu.cn

(Z. Chen).

ber ofmonomials in (1), and {Ik, k = 0, . . . , K} is the disjoint index
sets of {1, . . . ,Q }.

Geometric programs are not convex with respect to t whilst
they are convex with respect to {z : zj = log tj, j = 1, . . . ,M}.
Hence, interior point method can be efficiently used to solve
geometric programs.

In real world applications, some of the coefficients in (1) may
not be known precisely. Hence, stochastic geometric programming
is used to model geometric problems with random parameters.
For instance, individual probabilistic constraints have been used
to control the uncertainty level of the constraints in (1) [5,15]:

P


i∈Ik

ci
M
j=1

t
aij
j ≤ 1


≥ 1− ϵk, k = 1, . . . , K , (3)

where ϵk is the tolerance probability for the kth constraint in (2).
In this paper, we consider the following joint probabilistic

constrained stochastic geometric programs

(SGP) min
t∈RM
++

E
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i∈I0

ci
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j=1

t
aij
j


(4)

s.t. P


i∈Ik

ci
M
j=1

t
aij
j ≤ 1, k = 1, . . . , K


≥ 1− ϵ. (5)

Unlike [5,15], we require that the overall probability ofmeeting the
K geometric constraints is above a certain probability level 1 − ϵ,
where ϵ ∈ (0, 0.5].
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Stochastic geometric programs with joint probabilistic con-
straints are a special case of joint probabilistic constrained prob-
lems. The latter were first considered by Miller and Wagner [12].
They showed that joint probabilistic constrained problems are
equivalent to concave deterministic problems for uncorrelated
random variables. When the right hand side is a multivariate nor-
mally distributed random vector, Prékopa [14] showed that the
joint probabilistic constraint problems are convex. Iwata et al. [9]
studied stochastic optimization problems with linear or nonlin-
ear objective function and individual chance constraints. They used
their approach in order to determine the optimum cutting condi-
tions. The coefficients of the linear constraint and the right hand
side are correlated and normally distributed. The authors derive
a SOCP deterministic reformulation of the individual chance con-
straints. A convex approximation approach is proposed for lin-
ear programs with joint probabilistic constraints in [2]. When the
coefficients aij, i ∈ Ik,∀k, j = 1, . . . ,M , are deterministic and
ci, i ∈ Ik,∀k are uncorrelated normally distributed random vari-
ables, Dupačová [5] and Rao [15] show that the probabilistic con-
straint (3) is equivalent to two deterministic constraints involving
posynomials and common additional slack variables.

To the best of our knowledge, there are no in-depth research re-
sults on the stochastic geometric programs with joint probabilis-
tic constraints. Hence, in this paper, we propose new approaches
for solving problem (SGP) for pairwise independent normally dis-
tributed coefficients.

We first reuse the reformulation of individual probabilistic con-
straints in [5,15] to reformulate this problem as a biconvex prob-
lem. We use the standard variable transformation [1] in order to
derive a convex reformulation. However, there is a quantile func-
tion of the standardnormal distribution in the reformulationwhich
is nonelementary. Therefore, we apply the piecewise linear ap-
proximation to log(Φ−1(exk)2) rather than to Φ−1(yk) [2], which
leads to a convex approximation. Moreover, we show that this ap-
proximation provides a lower bound, and it also converges to an
equivalent reformulation of problem (4)–(5) when the number of
segments goes to infinity.

We derive an upper bound by using the obtained biconvex
problem with a new sequential convex approximation algorithm.
Notice that the authors in [2] used the piecewise linear approxi-
mation to come upwith an upper bound. Finally, numerical results
with a stochastic shape optimization problem show the efficiency
of the proposed approaches.

2. Stochastic geometric optimization under Gaussian distribu-
tion

We suppose that the coefficients aij, i ∈ Ik,∀k, j = 1, . . . ,M ,
are deterministic and the parameters ci, i ∈ Ik,∀k are normally
distributed and independent of each other, i.e., ci ∼ N(Eci , σ

2
i ) [5].

Moreover, we assume that Eci ≥ 0. As ci are independent of each
other, constraint (5) is equivalent to

K
k=1

P


i∈Ik

ci
M
j=1

t
aij
j ≤ 1


≥ 1− ϵ. (6)

By introducing auxiliary variables yk ∈ R+, k = 1, . . . , K , (6) can
be equivalently transformed into
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j ≤ 1


≥ yk, k = 1, . . . , K , (7)

and
K

k=1

yk ≥ 1− ϵ, 1 ≥ yk ≥ 0, k = 1, . . . , K . (8)

It is easy to see that for independent normally distributed ci ∼
N(Eci , σ

2
i ) [5], constraint (7) is equivalent to
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j ≤ 1,

k = 1, . . . , K . (9)

Here, Φ−1(yk) is the quantile of the standard normal distribution
N(0, 1). However, biconvex inequalities (9) are still very hard to
solve within an optimization problem [7].

2.1. Standard variable transformation

The standard variable transformation rj = log(tj), j = 1, . . . ,M ,
and xk = log(yk), k = 1, . . . , K , applied to (8) and (9) leads to the
following constraints:
i∈Ik

Eci exp


M
j=1

aijrj



+


i∈Ik

σ 2
i exp


M
j=1

(2aijrj + log(Φ−1(exk)2))


≤ 1,

k = 1, . . . , K , (10)
K

k=1

xk ≥ log(1− ϵ), xk ≤ 0, k = 1, . . . , K . (11)

Φ−1(·) is also called the probit function and can be expressed
in terms of the inverse error function:

Φ−1(yk) =
√
2 erf−1(2yk − 1), yk ∈ (0, 1).

The inverse error function is a nonelementary function which
can be represented by the Maclaurin series:

erf−1(z) =
∞
p=0

λp

2p+ 1

√
π

2
z
2p+1

,

where λ0 = 1 and λp =
p−1

i=0
λiλp−1−i

(i+1)(2i+1) > 0, p = 1, 2, . . . . Thus,
we know that Φ−1(yk) is convex for 1 > yk ≥ 0.5, and concave for
0 < yk ≤ 0.5. Moreover, Φ−1(yk) is always monotonic increasing.

Under constraint (11), we have 0.5 ≤ 1 − ϵ ≤ yk = exk < 1.
Hence, we can only focus on the right part of Φ−1(exk). This
means the feasible set constrained by both (10) and (11) is convex.
However, asΦ−1(·) is nonelementary,we still need to approximate
it for practical use. Unlike the approximation method in [2], we
approximate log(Φ−1(exk)2) rather than Φ−1(yk) by a piecewise
linear function.

2.2. Approximation of log(Φ−1(exk)2)

We choose S different linear functions:

Fs(xk) = dsxk + bs, s = 1, . . . , S,

such that

Fs(xk) ≤ log(Φ−1(exk)2), ∀xk ∈ [log(1− ϵ), 0),
s = 1, . . . , S. (12)

The expression log(Φ−1(exk)2) is then approximated by a piece-
wise linear function

F(xk) = max
s=1,...,S

Fs(xk). (13)

Constraints (12) and (13) guarantee that F(xk) provides a lower
bound of log(Φ−1(exk)2).
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