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a b s t r a c t

Time-dependent solutions to queuingmodels are very useful for evaluating the performance of real-world
systems. However, because of theirmathematical complexity, few available results exist. In this paper, we
derive the time-dependent performance measures for an M/D/1 queue starting with a positive number
of initial customers. Using the limiting property of an Erlang distribution, we obtain closed-form time-
dependent formulas for the queue length and the waiting time. Furthermore, the time-dependent queue
length probability in a busy period is derived.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Queuing models have been widely applied to the performance
analysis of real-world systems in a variety of fields such as commu-
nication systems and transportation systems. In practice, the time-
dependent characteristics of queues are oftenmoremeaningful for
system analysis; a good example of this is the 24-h traffic profile
on the Severn Bridge studied by Griffiths et al. [9] that applied the
transient queue length distribution of anM/Ek/1 queue.

Although the time-dependent behaviors of queuing models are
very useful for performance evaluations, few available results exist
because of their mathematical complexity. Early studies on the
time-dependent queue length distribution of the M/M/1 queue
were conducted by Luchak [12] and Saaty [13]. In [1,4,10,15,17],
time-dependent behaviors of Markovian queues were studied.
Ammar et al. [2] studiedM/M/1 queue with balking and reneging.
They presented the transient queue length distribution and the
busy period density function.

Recently, Baek et al. [3], Griffiths et al. [8,9], and Leonenko [11]
derived the transient solutions for M/Ek/1 queues. They obtained
the time-dependent queue length probability in terms of the
generalized modified Bessel function of the second type. For more
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detailed review on the time-dependent queuing systems, readers
are referred to Schwarz et al. [14].

Studies on queues with deterministic service times are even
more scarce. To the best of our knowledge, Garcia et al. [6] was
the first study that presented the closed-form time-dependent
queue length probability. They constructed a Markov chain for
the number of customers of an M/D/1/N queue at an arbitrary
service completion epoch and obtained the transient queue length
distribution. Since they derived the transient probability using
matrix analytic method, the results are computationally efficient.
The queue length formula for the M/D/c queue was studied by
Franx [5] using matrix analytic method.

In this paper, we analyze time-dependent behavior of the
traditional M/D/1 queue. We obtain the main results using the
well-known limiting property of the Erlang distribution and the
results are summarized in Table 1.

To the best of authors knowledge, our proposed results have
not appeared in the literature, and this is one of the contributions
of this paper. Comparing to the results in Franx [5], our closed-
form solutions are more complex. However, with our results,
one can compute the exact system performance measures as the
function of time, and we believe this is another contribution
of our paper. In addition to the methods based on the limiting
property, a direct probabilistic argument can be used to obtain the
transient results. We also present the analytic approach based on
probabilistic arguments in the online supplementary material (see
Appendix A).
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Table 1
Time-dependent probability distributions ofM/D/1 queue.

Notation Description Eq. no.

Q (j)
0 (t), Q (j)

n (t) Queue length probability at time t Eqs. (3) and (8)
W (j)

q (t, x) Waiting time distribution at time t Eqs. (9) and (14)
Q̃ (j)
0 (t), Q̃ (j)

n (t) Queue length probability at time t in a busy period Eqs. (17) and (20)

2. Main results

This section presents our main results. We derive the time-
dependent queue length probability,waiting timedistribution, and
queue length probability in a busy period of the M/D/1 queue in
closed-form. To do so, we apply the limiting property of an Erlang
random variable to the solutions of the M/Ek/1 queue in Griffiths
et al. [7–9] and Baek et al. [3].

2.1. Time-dependent queue length probability

Consider anM/D/1 queuing systemwith infinite waiting room,
arrival rate λ and deterministic service time 1/µ. We denote by
N0 the number of new initial customers at time t = 0. Let N(t)
as the number of customers at time t and we define the following
probability:

Q (j)
n (t) = Pr[N(t) = n|N0 = j], (n ≥ 0, j ≥ 0), (t > 0).

It is well-known that the Erlang random variable of order k
with mean 1/µ converges to the constant 1/µ in distribution as

k increases. Let F∗

X (θ; n, kµ) =


kµ

θ+kµ

n
as the Laplace transform

(LT) of Erlang random variable with the order n and the mean
n/(kµ). By taking k → ∞, we have

lim
k→∞

F∗

X (θ; k, kµ) = lim
k→∞


kµ

kµ + θ

k

= lim
k→∞


1 +

θ

kµ

−k

= e−
θ
µ . (1)

Note that Eq. (1) is the LT of the Dirac delta function. Thus, it is
easy to obtain

lim
k→∞

FX (t; k, kµ) = U

t −

1
µ


(2)

inwhich, FX (t; n, kµ) is the (cumulative) distribution function (DF)
of Erlang random variable with order n and mean n/kµ given as

FX (t; n, kµ) =

 t

0

(kµ)n · un−1
· e−kµt

(n − 1)!
du.

Using this limiting property, it is not difficult to guess that
the transient solutions to the M/D/1 queue can be obtained by
applying the limiting property to the transient solutions to the
M/Ek/1 queue.

We define P (j)
n,i(t), (n ≥ 1, j ≥ 0, i = 1, 2, . . . , k) as the proba-

bility that the queue length is n, the remaining service phase is i at
time t in the M/Ek/1 queue starting with j initial new customers.
The order and the mean of the service time are assumed to be k
and 1/µ, respectively. Let P (j)

0 (t) be the probability that the queue
length is 0 at time t . More details on P (j)

n,i(t) and P (j)
0 (t) are presented

in Griffiths et al. [7] and Luchak [12]. By the limiting property of the
Erlang distribution, Q (j)

n (t) can be given as

Q (j)
n (t) =


lim
k→∞

k
i=1

P (j)
n,i(t), (t > 0, n ≥ 1),

lim
k→∞

P (j)
0 (t), (t > 0, n = 0).

We then have the following theorem.

Theorem 2.1. Using the result in Luchak [12], we obtain

Q (j)
0 (t) =

∞
r=0

(λt)re−λt

r!
·


1 −

r
µt


· U


t −

r + j
µ



=

⌊µt−j⌋
r=0

(λt)re−λt

r!
·


1 −

r
µt


, (t > 0), (3)

where ρ = λ/µ, ⌊x⌋ is the greatest integer less than or equal to x and
U(t − a) is the unit-step function.

Proof. The proof is shown in section 1 in the online supplementary
material (see Appendix A). �

Next, using the results in Griffiths et al. [7] and Luchak [12], we
have

Q (j)
n (t) = lim

k→∞

[B1(t) + B2(t) − B3(t)] , (t > 0), (4)

where

B1(t) =

k
i=1

∞
r=0

(λt)n−j+re−λt

(n − j + r)!

·
(kµt)k(r+1)−ie−kµt

[k(r + 1) − i]!
, (t > 0), (5)

B2(t) =

∞
r=0

kµ
 t

0
P (j)
0 (u) ·

[λ(t − u)]n+re−λ(t−u)

(n + r)!

·
[kµ(t − u)]k(r+1)−1e−kµ(t−u)

[k(r + 1) − 1]!
du, (t > 0), (6)

B3(t) =

∞
r=0

kµ
 t

0
P (j)
0 (u) ·

[λ(t − u)]n+r+1e−λ(t−u)

(n + r + 1)!

·
[kµ(t − u)]k(r+1)−1e−kµ(t−u)

[k(r + 1) − 1]!
du, (t > 0). (7)

Theorem 2.2. It follows from Eqs. (4)–(7) that

Q (j)
n (t) = lim

k→∞

k
i=1

P (j)
n,i(t)

=
(λt)n+⌊µt⌋−j

· e−λt

(n + ⌊µt⌋ − j)!

+

⌊µt⌋−j−1
r=0

⌊µt⌋−j−r−1
m=0


λ


t −

r+1
µ

m
e−λ


t− r+1

µ


m!

×


1 −

m
µt − r − 1

 
1 −

λ(r + 1)
µ(n + r + 1)



·


λ(r+1)

µ

n+r
e−

λ(r+1)
µ

(n + r)!
, (t > 0). (8)

Proof. The proof is shown in section 2 in the online supplementary
material (see Appendix A). �
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