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a b s t r a c t

This paper presents a new class of cooperative cost games, supremum-norm cost games, which emerges
as a natural extension of k-norm games introduced by Meca and Sošić (2014) and can be seen as a
generalization of the airport games introduced by Littlechild and Owen (1973). We show that it is
reasonable to expect formation of the grand coalition in such setting, and describe allocations that lead
to stability of the grand coalition and reduce the individual cost of each agent.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Consider a setting in which a set of agents, N = {1, 2, . . . , n},
sell an identical product sourced from the same supplier. Agents
can form coalitions, S ⊂ N , and coalition members can cooper-
ate by placing joint orders for the product. The order placed by
each of the agents in the coalition will be transported to their
respective warehouse, so we refer to this type of collaboration as
transportation coalitions. We assume that there exists some a priori
information about the cost of transporting an order to every agent
i in coalition S, given by cSi (>0) for i ∈ S, S ⊆ N . We will de-
note the vector of individual agents’ costs in all possible subsets
by cN = (cSi )i∈S,∅≠S⊆N . Cooperation among agents is beneficial if
agents’ costs in larger sets do not exceed their costs in smaller ones,
that is, if the agents costs in different coalitions satisfy some sort of
monotonicity. In this setting, there can be several ways tomeasure
the total cost generated by a transportation coalition S ∈ N . The
simplest model assumes that the transportation cost is measured
linearly, c(S) =


i∈S c

S
i , and will be referred to as a linear trans-

portation situation. Another intuitive model uses the Euclidean

norm,


i∈S


cSi
21/2, and will be referred to as an Euclidean

transportation situation. The third model, which can be applied
when all the agents are located on the same line route, assumes
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that if a group of agents S places a joint order, its transporta-
tion cost is measured as the maximal distance from the provider,
c(S) = maxi∈S cSi . This will be referred to as a supremum trans-
portation situation.

When choosing a way of measuring the cost of a coalition, the
natural questions to consider are: (i) Under what conditions is it
reasonable to expect that all agents will collaborate together, that
is,will form the grand coalition? (ii) In the case that the grand coali-
tion has been formed, is it always possible to find stable allocations
that discourage defection of any agent? To answer the questions
above, we can define a corresponding transportation game as a TU
cost game (N, c), where c measures the cost generated by each of
the coalitions S ⊆ N . Then, the above questions are equivalent
to: (i) Under what conditions is the game (N, c) subadditive? (ii) If
the game (N, c) is subadditive, does it have a nonempty core? [5]
answer those questions for linear and Euclidean transportation
situations, by means of k-norm games. In this paper, we address
these questions for supremum transportation situation and find
that both answers are positive.

The plan of the paper is as follows. We introduce the model
in Section 2. Section 3 analyzes the core of supremum-norm cost
games and describes the set of all core allocations. In Section 4
we discuss stable allocations for supremum-norm cost games. All
proofs are in the technical Appendix.

2. Supremum-norm cost games

In this section, we first introduce cost-coalitional problems and
some of their desirable properties, and then define supremum-
norm cost games.
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2.1. Cost-coalitional problem

Let N = {1, 2, . . . , n} denote the set of all agents and S ⊆ N
be an arbitrary set of agents in N . We assume that each member
of S incurs certain positive cost, which depends on the subset S to
which he belongs; we denote this cost by cSi (>0) for i ∈ S, S ⊆ N .
To simplify the notation, we use ci to denote an agent’s stand-alone
cost, ci = c{i}

i . In addition, we denote the vector of individual
agents’ costs in all possible subsets by cN = (cSi )i∈S,∅≠S⊆N , and
define a cost-coalitional problem as a pair (N, cN), where N is the
set of all agents and cN is the cost-coalitional vector.

Note that cooperation is beneficial only if agents’ costs in larger
subsets do not exceed their costs in smaller ones. This is a desirable
property that we formalize below.

Property 1. A cost-coalitional vector cN satisfies costmonotonicity if
each agent’s cost in a given set does not exceed his cost in its subset,
cSi ≤ cTi , for all i ∈ T , T ⊂ S.

In the set of all agents, we want to identify a special subset. For
a given cost-coalitional problem (N, cN), let us denote by E(N, c)
the set of extreme players—those with the maximum cost in the
grand coalition, E(N, cN) = {i ∈ N : cNi = maxj∈N cNj }. Note
that E(N, cN) ≠ ∅. We use e to denote cardinality of E(N, cN),
e = |E(N, cN)|.

2.2. Cooperative cost games

Wenow introduce anewclass of cooperative games, supremum-
norm cost games, that can be seen as a natural extension of k-norm
games introduced by [5] when k = ∞.

First, we introduce terminology from game theory. Each set
S ⊆ N is referred to as a coalition, and S = N is referred to as the
grand coalition. Let (N, c) denote a cost game, where c(·) denotes
the cost function defined on the set of all subsets of N .

For a given cost-coalitional problem, (N, cN), we can associate
a k-norm cost game. [5] define k-norm games for k = 1, 2, as
cost games (N, c) for which c(S)k =


i∈S


cSi
k. We say that a

cost game (N, c) is a supremum-norm cost game if the cost of each
coalition is obtained by taking the limit when k → ∞,

c(S) := lim
k→∞


i∈S


cSi
k1/k

= max
i∈S

cSi .

Notice that, for 1 < k < ∞, maxi∈S cSi ≤

c(S)k

1/k
≤


i∈S c
S
i .

While the traditional definition of a cooperative cost game
assigns a cost to each specific coalition, in our model we also know
the cost of each member of a specific coalition. This additional
information is useful when we study the role played by extreme
players in achieving stability of the grand coalition.

Each cost-coalitional vector cN leads to a unique supremum-
norm cost game and vice versa. Hereafter, we focus on games
whose cost-coalitional vectors satisfy monotonicity property
(Property 1), and refer to them as supremum-norm cost monotonic
(SCM) games. In the class of SCM games, we want to identify a
special subclass for which cSi = ci for all i ∈ N, S ⊆ N; we will
refer to the games that satisfy this property as supremum-norm
fixed cost games, or SFC games. We can observe that the airport
games, introduced in [4], are, in fact, SFC games. Another example
of possible application of SCM games is cooperative purchasing.
In their recent paper, [6] study cooperative purchasing situations
in which each of n buyers orders inventory (an exogenous order
quantity) from a common supplier, who offers a quantity discount
scheme. If a subgroup of buyers is formed, the unit price paid by
its members is determined by its member with the largest order

quantity.While the authors of the paper focus on the savings game
(the difference between the cost if a buyer acts alone or as a part
of a group), we can see that the underlying cost game corresponds
to a SFC game.

To complete this section, we introduce the notion of subadditiv-
ity and concavity. A game is said to be subadditive if for each S, T ⊂

N such that S


T = ∅, it holds that c

S


T


≤ c(S)+ c(T ). Thus,
as the cost of two disjoint coalitions after merger does not exceed
the sum of their costs before merger, when a supremum game is
subadditive, it is reasonable to expect formation of the grand coali-
tion. Our analysis shows that this is always true for SCM games.

Proposition 1. SCM games are subadditive.

A game is said to be concave if for each S, T ⊂ N it holds
that c(S


T ) + c(S


T ) ≤ c(S) + c(T ). It can be shown that

this condition is equivalent to c

S


{i}


− c(S) ≤ c

T


{i}


−

c(T ), i ∉ S, T ⊂ S ⊆ N . We show that this holds for SFC games.

Proposition 2. SFC games are concave.

Thus, whenever the cost incurred by a player does not change
in different coalitions, the resulting game is concave and has
a nonempty core (see [10]). We now show that this concavity
property can be extended to a larger class of games, which we call
ordered supremum-norm cost monotonic (OSCM) games. An OSCM
game is a SCM game with cost-coalitional vector cN that satisfies
the following properties:

• Order preservation: if cSi > cSk for some i, k ∈ S ⊆ N , then
cTi ≥ cTk for all T ⊆ N such that i, k ∈ T ;

• Ordered differences: if ci > ck and T ⊂ S, then cTk − cSk ≤

cTi − cSi ;
• Decreasing individual differences: for i ∈ T ⊂ S ⊆ N and

V ⊂ N such that V ∩ S = ∅, cTi − cT∪V
i ≤ cSi − cS∪V

i ;
• Ordered decreasing differences: for k ∈ T ⊂ S ⊆ N, i ∈

S ⊆ N and V ⊂ N such that V ∩ S = ∅, if ci > ck, then
cTk − cT∪V

k ≤ cSi − cS∪V
i .

Order preservation implies that if one agent’s cost exceeds another
agent’s cost in one coalition, his cost can never be lower than that
of the other agent; thus, the order of agents’ costs is preserved
in all coalitions. Ordered differences imply that if one agent has
higher cost than the other, then the cost reduction stemming
from increased coalition size of the agent with higher cost cannot
be smaller than the cost reduction of the agent with lower cost.
Decreasing individual differences imply that if a set of agents
join an existing coalition, each agent in the original coalition sees
greater reduction in his cost when the original coalition is larger
in size. Finally, ordered decreasing differences imply that if a set
of agents joins an existing coalition, an agent with a higher cost
belonging to a larger original coalition sees greater reduction in his
cost than an agent with a lower cost belonging to a smaller original
coalition. It is easy to verify that each SFC game is also an OSCM
game. For the OSCM games, we have the following result.

Proposition 3. OSCM games are concave.

There exist concave SCM games that are not OSCM games; for
instance, ifN = {1, 2, 3}, cS1 = 1 for all S ⊆ N , cS2 = 2 for all S ⊂ N ,
cN2 = 0.5, and cS3 = 3 for all S ⊆ N , the resulting game is concave
and does not satisfy order preservation.

Next, we study conditions for stability of the grand coalition in
the sense of the core.
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