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a b s t r a c t

We consider the problem of minimizing the sum of a strongly convex function and a term comprising
the sum of extended real-valued proper closed convex functions. We derive the primal representation of
dual-based block descentmethods and establish a relation between primal and dual rates of convergence,
allowing to compute the efficiency estimates of different methods. We illustrate the effectiveness of the
methods by numerical experiments on total variation-based denoising problems.
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1. Introduction

1.1. The basic setting

In this paper, our aim is to devise simple methods for solving
minimization problems of the form

(P) min
x∈E


f (x)+

m
i=1

ψi(x)


,

with E being a given final dimensional Euclidean space with inner
product ⟨·, ·⟩ and associated Euclidean norm ∥x∥ ≡

√
⟨x, x⟩.

The functions f and ψi satisfy the following conditions that are
summarized in one assumption.

Assumption 1. • f : E → (−∞,∞] is a closed, proper extended
valued σ -strongly convex function.

• ψi : E → (−∞,∞] (i = 1, 2, . . . ,m) is a closed, proper
extended real-valued convex function.

• ri(dom f ) ∩
m

i=1 ri(domψi)


≠ ∅.

Under the latter assumption, problem (P) has a unique mini-
mizer that we denote by x∗; the optimal value is denoted by fopt =
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f (x∗). The dual problem of (P) is given by

(D) max
y


q(y) ≡ −f ∗


−

m
j=1

yj


−

m
j=1

ψ∗

j (yj)


, (1.1)

where f ∗(·) = supx∈E⟨·, x⟩−f (x) andψ∗

i (·) = supx∈E⟨·, x⟩−ψi(x)
are the corresponding conjugate functions. The duality between (P)
and (D) is obviously a simple application of Fenchel’s (aswell as La-
grangian) duality [18]. In this specific form, it is also known as the
duality between the regularized consensus problem and the shar-
ing problem (see Section 7 of [7]).

Since Slater’s condition is satisfied, and since the primal prob-
lem is bounded below, strong duality holds, which means that the
optimal solution of the dual problem is attained and the optimal
value of the dual problem, which we denote by qopt, coincides with
the primal optimal value:

fopt = val (P) = val (D) = qopt.

Using the notation y = (y1, y2, . . . , ym), the dual problem (D) in
minimization form can be written as

min
y∈Em


H(y) ≡ F(y)+

m
i=1

Ψi(yi)


(1.2)

with

F(y) ≡ f ∗


−

m
j=1

yj


, Ψj(yj) ≡ ψ∗

j (yj). (1.3)

Under Assumption 1, Ψ1,Ψ2, . . . ,Ψm are closed, proper and
convex and, by the well-known Baillon–Haddad Lemma (see
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[19, Section 12H]), F is an L-smooth function with L =
m
σ
, meaning

that ∥∇F(y)− ∇F(w)∥ ≤ L∥y − w∥ for any y,w ∈ E. In addition,
for any i, ∇iF is Lipschitz continuous with constant 1

σ
. The optimal

solution set of the dual problem will be denoted by Y ∗.

1.2. Paper layout

The main objective of the paper is to present a convergence
analysis of dual-based decomposition methods for solving (P),
where the basic step in the dual algorithm will either consist of
a well known exact minimization [10] or a proximal gradient step
[3,9] with respect to the corresponding block of dual variables. We
begin in Section 2 by deriving a primal representation of both dual
block proximal gradient and dual alternating minimization meth-
ods. We then establish in Section 3 a relation between certain pri-
mal and dual distances to optimality that allows to automatically
translate any rate of convergence result in the dual space into a rate
of convergence result in the primal space. We then utilize known
results on rates of convergence for variables decomposition meth-
ods in order to establish new corresponding results for dual-based
decomposition methods. Finally, we demonstrate in Section 4 the
potential of the derived methods in the context of total variation-
based denoising problems.

1.3. Literature review

Variables decomposition methods such as the alternating
minimization method were extensively studied for many years,
see e.g., [1,6,16,10]. Rate of convergence results under certain
strong convexity and/or error boundassumptionswere established
in [10,13]. The first rate of convergence result in the deterministic
setting without any strong convexity/error bounds assumption
was established in [5], where an O(1/k) rate convergence of
the block coordinate gradient projection method was shown. In
the unconstrained case, it was shown that the method can be
accelerated to a rate of O(1/k2). The work [5] also established
an O(1/k) rate of convergence for the alternating minimization
method with two blocks in the smooth unconstrained case with
a multiplicative constant that depends on the minimum of the
block Lipschitz constants. The latter was later generalized in [2]
to the case of a composite objective function with a separable
nonsmooth paper. Recently, it was shown in [11] that a sublinear
rate of convergence can also be established for the block proximal
gradient and alternating minimization methods with arbitrary
number of blocks. Randomized methods in which the blocks are
not picked by a deterministic rule, but rather by some random
distribution on the indices set are also the topic of an extensive
research [15,17,12].

The idea of solving a problem of the form (P) via a dual-based
block decompositionmethod for the casem = 2was studied in [8].

2. Dual-based block descent methods

2.1. Step types

We begin by describing the two types of minimization opera-
tions that will be employed on a given block i ∈ {1, 2, . . . ,m}.
We assume that the dual variables are given by yj = ȳj, j ∈

{1, 2, . . . ,m}, and showhow to compute the newvalue of yi, which
we denote by ynewi . We consider two options for the dual step em-
ployed on the ith block:

• dual exact minimization step.

ynewi ∈ argmin
yi


f ∗


−

m
j=1,j≠i

ȳj − yi


+ ψ∗

i (yi)


. (2.1)

Note that for this minimization step, the value of ȳi is not being
used.

• dual proximal gradient step.

ynewi = proxσψ∗
i


ȳi + σ∇f ∗


−

m
j=1

ȳj


. (2.2)

2.1.1. Primal representation of the dual exact minimization step
To derive a primal representation of (2.1), let us write it as

min
yi,w


f ∗(w)+ ψ∗

i (yi) : w + yi = −ỹi

, (2.3)

where ỹi =
m

j=1, j≠i ȳj. The dual problem of (2.3) is

max
x

min
w,yi


f ∗(w)+ ψ∗

i (yi)− ⟨x,w + yi + ỹi⟩


= max
x


min
w
(f ∗(w)− ⟨x,w⟩)


+


min
yi
(ψ∗

i (yi)− ⟨x, yi⟩)


− ⟨x, ỹi⟩


= max
x


−f (x)− ψi(x)− ⟨x, ỹi⟩


,

where in the last equality we used the fact that f = f ∗∗ and
ψi = ψ∗∗

i (since f and ψi are closed, proper and convex). We
can thus conclude that ynewi can be determined by first computing
x̄ ∈ argminx∈E


f (x)+ ψi(x)+ ⟨ỹi, x⟩


, and then choosing ynewi ∈

argmaxyi

⟨yi, x̄⟩ − ψ∗

i (yi)

, which is exactly the same as ynewi ∈

∂ψi(x̄). Therefore, step (2.1) is equivalent to
Primal representation of the dual exact minimization step:

x̄ = argmin
x∈E


f (x)+ ψi(x)+ ⟨ỹi, x⟩


,


ỹi =


j≠i

ȳj


(2.4)

ynewi ∈ ∂ψi(x̄). (2.5)

When f is also assumed to be continuously differentiable over
E, we can use the first-order optimality condition on problem (2.4)
to conclude that −∇f (x̄) − ỹi ∈ ∂ψi(x̄). Therefore, step (2.5) can
be replaced (in this setting) with ynewi = −∇f (x̄)− ỹi.

2.1.2. Primal representation of the dual proximal gradient step
To find a primal representation of (2.2), first note that

∇f ∗


−

m
j=1

ȳj


= argmax

x∈E


−

m
j=1

ȳj, x


− f (x)



= argmin
x∈E


f (x)+


m
j=1

ȳj, x


.

By denoting the above argmin/argmax by

x̄ = argmin
x∈E


f (x)+


m
j=1

ȳj, x


,

we obtain that the proximal gradient step takes the form ynewi =

proxσψ∗
i
(ȳi + σ x̄). Using the Moreau decomposition formula [14],

prox σψ∗
i
(z) = z − σproxψi/σ

(z/σ), and hence,

ynewi = ȳi + σ x̄ − σproxψi/σ


ȳi
σ

+ x̄

.
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