
Operations Research Letters 44 (2016) 67–73

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Radius of robust feasibility formulas for classes of convex programs
with uncertain polynomial constraints
M.A. Goberna a,∗, V. Jeyakumar b, G. Li b, N. Linh b

a Department of Statistics and Operations Research, Alicante University, 03071 Alicante, Spain
b Department of Applied Mathematics, University of New South Wales, Sydney 2052, Australia

a r t i c l e i n f o

Article history:
Received 7 May 2015
Received in revised form
22 November 2015
Accepted 22 November 2015
Available online 28 November 2015

Keywords:
Robust optimization
Convex programming
Data uncertainty
Radius of robust feasibility

a b s t r a c t

The radius of robust feasibility of a convex program with uncertain constraints gives a value for the
maximal ‘size’ of an uncertainty set under which robust feasibility can be guaranteed. This paper provides
an upper bound for the radius for convex programs with uncertain convex polynomial constraints
and exact formulas for convex programs with SOS-convex polynomial constraints (or convex quadratic
constraints) under affine data uncertainty. These exact formulas allow the radius to be computed by
commonly available software.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Robust convex optimization [4,3,5,11,17,16] deals with solu-
tions of robust counterparts of uncertain convex programs where
the data uncertainty is treated as deterministic, as opposed to
stochastic that is used in stochastic programming. It has emerged
as a powerful numerically tractable approach to treat uncertainty
in convex programming. Yet, one notable limitation of its applica-
tion is that the robust counterpart, where the uncertainty is en-
forced for every data within a specified uncertainty set, may not
have a feasible solution, resulting in an infeasible robust convex
program. A formula for calculating the maximal ‘size’ of the speci-
fied uncertainty set has long been sought so that feasibility of the
robust convex program, known as robust feasibility, can be guar-
anteed.

In this paper, we provide such results by introducing the notion
of radius of robust feasibility in robust convex optimization. It was
inspired by the notion of consistency radius used in linear semi-
infinite programming in order to guarantee the feasibility of the
nominal problem under perturbations preserving the number of
constraints [8,9,7]. This notion extends the concept of radius of
robust feasibility introduced in [13] for robust linear programs.
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We first derive an upper bound for the radius in the general case
of convex programs with convex polynomial constraints under
uncertainty both in the affine and non-affine data.We then present
an exact formula for the radius of robust feasibility of a convex
programwith uncertain SOS-convex polynomial constraints under
affine data uncertainty. In particular, we show that the radius
of robust feasibility can be given in terms of the optimal value
of a convex quadratic program with sum-of-squares constraints.
This value can be found by solving an equivalently reformulated
linear semi-definite programming (SDP in brief) problem. Thus,
the radius can easily be calculated using commonly available
algorithms and software. In the special case of convex programs
with uncertain convex quadratic constraints under affine data
uncertainty, we show that the radius of robust feasibility can be
found by solving a simple explicit semi-definite linear program.

The paper is organized as follows. Section 2 provides an upper
bound for the radius of robust feasibility for convex programswith
uncertain convex polynomial constraints. Section 3 gives exact
radius of robust feasibility formulas under affine data uncertainty
for convex programs with SOS-convex polynomial constraints or
convex quadratic constraints.
Notations: Beforewemove to the next section,we introduce some
necessary notation.Wedenote by 0n and∥·∥ the vector of zeros and
the Euclidean norm in Rn, respectively. The inner product between
x ∈ Rn and y ∈ Rn, is defined by ⟨x, y⟩ = xTy. The closed unit ball
and the distance associated to the above norm are denoted by Bn
and d, respectively. Given Z ⊂ Rn, int Z, cl Z, bd Z , and conv Z de-
note the interior, the closure, the boundary and the convex hull of
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Z , respectively, whereas cone Z := R+conv Z denotes the convex
conical hull of Z ∪ {0n}. A symmetric n × n matrix A is said to be
positive semi-definite, denoted by A ≽ 0, whenever xTAx ≥ 0 for all
x ∈ Rn. We also use Sn

+
to denote the cone consisting of all sym-

metric n × n positive semi-definite matrices. The (n × n) identity
matrix is denoted by In. Let Z be a closed and convex set in Rn with
0n ∈ intZ . We define a convex function φZ : Rn

→ R+ by φZ (x) =

inf{t > 0 : x ∈ tZ}. The function φZ is indeed a positive homoge-
neous convex function and is known as the Minkowski functional
in the convex analysis literature, and is an extension of the usual
norm function. In particular, if Z = Bn, then φZ (x) = ∥x∥.

2. Uncertain convex polynomial constraints

We begin by examining a convex program with general
uncertain convex polynomial constraints

min
x∈Rn

{f (x) : g j (x) ≤ 0, j ∈ J}, (P)

where J = {1, 2, . . . , q} is a finite index set, f : Rn
→ R is a

convex function and g j : Rn
→ R is a convex polynomial. The

robust counterpart of the uncertain convex program (P) is given by

min
x∈Rn


f (x) : g j (x) +

p
l=1

vl
j ḡ

l
j (x) + aTj x + bj ≤ 0,

∀

vj, (aj, bj)


∈ ᾱj


M × Bn+1


, j ∈ J


, (RPᾱ)

where ḡ l
j are convex polynomials on Rn, l = 1, . . . , p, vj =

v1
j , . . . , v

p
j


∈ Rp,M ⊂ Rp

+ is a convex compact set with 0p ∈ M
and ᾱj ≥ 0, j ∈ J . We assume throughout this section that
x ∈ Rn

: g j (x) +

p
l=1

vl
j ḡ

l
j (x) + aTj x + bj ≤ 0,

∀

vj, (aj, bj)


∈ ᾱj


M × Bn+1


, j ∈ J


≠ ∅.

As convexity is preserved for only nonnegative perturbations of
nonlinear convex polynomials, we require that vj ∈ Rp

+, j ∈ J.
Moreover, it has also been noted in [14] that if this nonnegative
restriction ofM is dropped, the corresponding robust optimization
problem is in general NP-hard, even when f and g j are all convex
quadratic functions.

On the other hand, it is known that in the case where f and g j

are convex quadratic functions, and M := Bp ∩ Rp
+ (the so-called

restricted ellipsoidal uncertainty set), the optimal value of (RPα)
can be found by solving a semi-definite programming problem
(see [14] and for an extension to a class of convex polynomial
programs, see [20]). Various computationally tractable classes of
robust counterparts of the form (RPᾱ) in the more general case,
where f and g j are convex polynomials, are also given in [20].

Now, consider the family of robust counterparts of the original
problem (P):

min
x∈Rn


f (x) : g j (x) +

p
l=1

vl
j ḡ

l
j (x) + aTj x + bj ≤ 0,

∀

vj, (aj, bj)


∈ (αj + αj)


M × Bn+1


, j ∈ J


, (RPᾱ,α)

where αj ≥ 0, j ∈ J = {1, 2, . . . , q} and α = (α1, . . . , αq).

Definition 2.1 (Radius of Robust Feasibility). The radius of robust
feasibility, ρ(g, α), associated to g = (g1, . . . , gq) and α ≥ 0, is
defined to be

ρ(g, α) := sup

min
j∈J

αj : (RPᾱ,α) is feasible


. (1)

It is interesting to note that in the case where ᾱ = 0q the radius
ρ(g, α) provides themaximal size of the ball uncertainty set under
which robust feasibility of (P) is guaranteed.

Recall that an extended real-valued function h on Rn is called
proper if h(x) > −∞ for all x ∈ Rn and there exists x0 ∈ Rn such
that h(x0) < +∞. Denote by Γ (Rn) the class of proper convex
lower semicontinuous (lsc) extended real-valued functions. Now
let h ∈ Γ (Rn). The effective domain and the epigraph of h are
defined respectively as follows:

dom h = {x ∈ Rn
: h(x) < +∞} and

epih = {(x, γ ) ∈ Rn
× R : x ∈ dom h, h(x) ≤ γ }.

The conjugate function of h, h∗
: Rn

→ R ∪ {+∞}, is defined
by h∗(v) = sup{vT x − h(x) : x ∈ dom h}. Note that, for h1, h2 ∈

Γ (Rn),

epi(h1 + h2)
∗

= epih∗

1 + epih∗

2, (2)

provided either h1 or h2 is a real-valued convex function.Moreover,
for a proper lsc convex function h, we have

epi(αh)∗ = α epih∗
+

{0n} × R+


for α ≥ 0. (3)

The following result plays a key role in the next section in
developing upper bounds for the radius of robust feasibility.

Lemma 2.1 ([10]). Let ht ∈ Γ (Rn) for all t ∈ T (an arbitrary
index set). Then, {x ∈ Rn

: ht(x) ≤ 0, t ∈ T } ≠ ∅ if and only if
(0, −1) ∉ cl cone


t∈T epih

∗
t


.

In order to establish bounds for the radius of robust feasibility,
we need the following lemma.

Lemma 2.2. Let hj : Rn
→ R, j ∈ J , be convex functions. Let β ≥ 0,

and let Z0 ⊂ Rn+1 be a compact and convex set with 0n+1 ∈ intZ0.
Suppose that (0n, −1) ∈ cl cone


j∈J epih

∗

j + βZ0

. Then, for all

δ > 0, we have (0n, −1) ∈ cone


j∈J epih
∗

j + (β + δ)Z0

.

Proof. We proceed by the method of contradiction and assume
that there exists δ > 0 such that (0n, −1) ∉ cone


j∈J epih

∗

j +

(β + δ)Z0

. Then, the separation theorem implies that there exists

(ξ , r) ∈ Rn+1
\ {0n+1} such that for all (y, s) ∈ cone


j∈J epih

∗

j +

(β + δ)Z0

,

−r = ⟨(ξ , r), (0n, −1)⟩ ≤ 0 ≤ ⟨(ξ , r), (y, s)⟩. (4)

Note that (0n, −1) ∈ cl cone


j∈J epih
∗

j + βZ0

. As |J| < +∞,

by passing to subsequence if necessary, the Carathédory’s Theorem
implies that there exist jl ∈ J, l = 1, . . . , n+2, {µjl

k} ⊂ R+, {ujl
k} ⊂

domh∗

jl
, {ϵ

jl
k } ⊂ R+ and (z jlk , t

jl
k ) ⊂ Z0, such that

(yk, sk) :=

n+2
l=1

µ
jl
k


ujl
k , h

∗

jl(u
jl
k) + ϵ

jl
k


+ β(z jlk , t

jl
k )


→ (0n, −1) as k → ∞.
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