
Operations Research Letters 44 (2016) 80–85

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Benders decomposition: Solving binary master problems by
enumeration
D. Antony Tarvin a, R. Kevin Wood b, Alexandra M. Newman c,∗

a White Sands Missile Range, NM 88002, USA
b Operations Research Department, Naval Postgraduate School, Monterey, CA 93943, USA
c Mechanical Engineering Department, Colorado School of Mines, Golden, CO 80401, USA

a r t i c l e i n f o

Article history:
Received 3 February 2014
Received in revised form
24 August 2015
Accepted 18 November 2015
Available online 27 November 2015

Keywords:
Benders decomposition
Explicit enumeration
Facility location

a b s t r a c t

We develop a variant of Benders decomposition for mixed-integer programming that solves each master
problem by explicit enumeration. By storing the master problem’s current objective-function value for
each potential solution, computational effort remains essentially constant across iterations. Using both
serial and parallel processing, tests against competing methods show computational speedups that
exceed two orders of magnitude.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many mixed-integer programs (MIPs) solve efficiently only
through decomposition (e.g., [27]). Benders decomposition is
typical [3], and has been employed in such applications as distri-
bution planning [11], power-flow optimization [1] and preventive-
maintenance scheduling [6]. Magnanti and Wong [16] note that
a key computational challenge for the Benders decomposition al-
gorithm (BD) is solving the (relaxed) mixed-integer master prob-
lem repeatedly. Each iteration of BD introduces a new constraint, a
Benders cut, which increases the master problem’s size and, thus,
its worst-case solution time [18, p. 125]. A typical BD implementa-
tion solves themaster problems by standard, linear-programming-
based branch-and-bound (B&B). Our paper investigates how the
decomposition algorithm’s empirical efficiency may improve by
solving those master problems through the explicit enumeration
of feasible solutions.

A number of techniques have been developed to improve
BD’s computational efficiency, for example: (i) strengthening
master-problem cuts by exploiting interior-point subproblem
solutions [17]; (ii) adding knapsack cover cuts based on Benders
cuts [23]; (iii) deleting Benders cuts from early iterations that

∗ Corresponding author.
E-mail addresses: tony.tarvin@hotmail.com (D.A. Tarvin), kwood@nps.edu

(R.K. Wood), anewman@mines.edu (A.M. Newman).

become ‘‘unattractive’’ [10]; and (iv) reformulating to yield a
‘‘multicut master problem’’, which possesses one group of cuts for
each independent subproblem [4]. Rather than modifying master-
problem formulations, however, we seek a faster method to solve
master problems, a method that applies to standard and multicut
formulations, and which should benefit from enhancements
such as the inclusion of knapsack cuts or other integer cutting
planes. Because of this focus, we compare our method against
two important, existing variants of BD that also modify how
master problems are solved: (i) master-problem suboptimization,
which relaxes standard optimality requirements for the master
problem [11]; and (ii) Benders branch-and-cut, which adds Benders
cuts within the branch-and-bound enumeration tree of a single
master problem [25]. We describe both techniques in more detail
later.

Salmeron and Wood [20] first suggest the technique investi-
gated in our paper: converting standard BD into ‘‘BD-E’’ by solving
BD’s master problem by explicit enumeration. This technique has
clear computational limitations, but those limitations may not be
relevant in many settings. For example, models for infrastructure
protection and/or interdiction [5] often describe a ‘‘target-rich but
resource-poor environment’’, in which resources limit the number
of targets (e.g., bridges, electric power substations) that might be
attacked or protected. In this case, a feasible master-problem so-
lution corresponds exactly to a resource-feasible attack or protec-
tion plan, so enumeration of each such plan and evaluation in the
relaxedmaster problemmay be computationally viable [20]. (Eval-
uating each plan exactly through the Benders ‘‘subproblem’’ would
be computationally prohibitive, however.)

http://dx.doi.org/10.1016/j.orl.2015.11.009
0167-6377/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2015.11.009
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2015.11.009&domain=pdf
mailto:tony.tarvin@hotmail.com
mailto:kwood@nps.edu
mailto:anewman@mines.edu
http://dx.doi.org/10.1016/j.orl.2015.11.009

D.A. Tarvin et al. / Operations Research Letters 44 (2016) 80–85 81

The implementation of the enumeration procedure in [20]
produces a decomposition algorithm that does not consistently
outperform standard BD. That paper restricts itself, however, to
programming the enumeration using a non-compiled, algebraic
modeling language, which employs only serial processing. To
examine the technique more completely, we implement both
serial and parallel algorithms using a compiled programming
language and test in the context of an interdiction model, as well
as a two-stage stochastic program.

2. Background on Benders decomposition

To facilitate subsequent development, this section describes a
standard BD to solve a MIP. For simplicity, we limit attention to a
MIP whose discrete variables are binary and which is assumed to
have a finite optimal solution:

MIP z∗ = min
x∈X, y∈R

ny
+

cx+ f y (1)

s.t. Bx+ Dy ≥ d, (2)

whereX ≡ {x ∈ {0, 1}nx |Ax ≤ b};Rn
+
denotes the n-dimensional,

non-negative real space; A, B, and D are dimensioned m1 × nx,
m2 × nx, and m2 × ny, respectively; and the vectors b, c, d, f, x,
and y conform. In addition, we require an efficient enumeration
algorithm for X, which should also have modest cardinality, say
|X| < 109. (Parallel processing might relax the cardinality limit
by several orders of magnitude.) Our two test problems define
X through single knapsack constraints, so efficient enumeration
is straightforward. More complex constraint sets defining X are
certainly possible, and we suggest those used in [11,24] as good
examples.

Fixing x = x̂ ∈ X in MIP yields the following subproblem:

SUB(x̂) z∗SUB(x̂) = min
y∈R

ny
+

cx̂+ f y (3)

s.t. Dy ≥ d− Bx̂. [α(x̂)] (4)

where: (i) in brackets and next to its corresponding constraints,
α(x̂) represents the optimal dual vector produced by our linear-
programming solver; (ii) we will use A ≡ ∪x̂∈X{α(x̂)}; (iii)
α̂ ≡ α(x̂), with the argument suppressed for simplicity; and (iv)
ŷ denotes the optimal primal solution given x̂ (with no argument
for the sake of simplicity).

Assumption 1. SUB(x̂) is feasible ∀ x̂ ∈ X. �

Assumption 1 corresponds to ‘‘relatively complete recourse’’ in
the stochastic-programming literature (e.g., [28]). While conve-
nient for exposition, the assumption is not limiting. If it does not
hold, thenBD can (i) introduce ‘‘feasibility cuts’’ to themaster prob-
lem as necessary [27], or (ii) solve a standard, reformulated model
that penalizes constraint violations in the subproblem. Section 6
explains how to implement feasibility cuts in BD-E.

Under Assumption 1, BD reformulates MIP into this equivalent
master problem:

MP(A) z∗ = z∗MP(A) = min
x∈X,η

η (5)

s.t. η ≥ cx+ α̂(d− Bx) ∀ α̂ ∈ A. (6)

Rather than exhaustively computing the elements of A and then
solving MP(A) directly, a general version of BD begins with an
arbitrary set Â ⊂ A and with an initial feasible solution x̂ ∈
X. Then, iteratively, BD (i) solves SUB(x̂) for ŷ and α̂, (ii) adds
α̂ to Â, and (iii) solves the relaxed master problem MP(Â) for x̂.
The algorithm terminates once MP(Â) approximates MP(A) well
enough to prove near-optimality of some previously discovered
(x̂, ŷ) [3]. ‘‘Algorithm 1’’ summarizes BD for later reference; we
refer the reader to Benders’ original paper [3] for a proof of
correctness.

Algorithm 1—Benders decomposition algorithm (BD)

Input: An instance ofMIP and allowable optimality gap ε ≥ 0.

Output: An ε-optimal solution toMIP .

Step 0: Initialization
a. K ← 1; z ←−∞; z̄ ←∞; Â0 ← ∅;

x̂1 ← any x ∈ X;
b. Dummy step for initialization;

Step 1: Subproblem
Solve SUB(x̂K) for ŷK , α̂K and z∗SUB(x̂K);
ÂK ← ÂK−1 ∪ {α̂K };
If (z∗SUB(x̂K) < z̄) { z̄ ← z∗SUB(x̂K);

(x∗, y∗)← (x̂K , ŷK); }
If (z̄ − z ≤ ε) go to Step 3;

Step 2: Master Problem
a. SolveMP(ÂK) for x̂K+1 and z∗MP(ÂK);
b. z ← z∗MP(ÂK);

c. If (z̄ − z ≤ ε) go to Step 3;
d. K ← K + 1; Go to Step 1;

Step 3: Print Solution
Print (‘‘ε-optimal solution to MIP is", (z̄, x∗, y∗)); Halt.

3. SolvingMP(ÂK) by enumeration

Typically, BD solves the K th relaxed master problem MP(ÂK)
by B&B, but if |X| is sufficiently small, we will demonstrate
that explicit enumeration can solve MP(ÂK) more efficiently. The
comparative efficiency of enumeration will become apparent as
the number of cuts in MP(ÂK) increases with increasing K and
B&B slows dramatically.

Let α̂k denote the dual vector generated in BD’s kth iteration.
The master problem in iteration K is then

MP(ÂK) z∗MP(ÂK) = min
x∈X,η

η (7)

s.t. η ≥ g0(x̂k)+
nx
j=1

gj(x̂k)xj ∀ k ∈ {1, . . . , K}, (8)

where, letting B·j denote B’s jth column, gj(x̂k) ≡ −α̂kB·j + cj for
j = 1, . . . , nx, and g0(x̂k) ≡ α̂kd. Equivalently, MP(ÂK) may be
written as

MP(ÂK) z∗MP(ÂK) = min
x∈X

ηK (x), where (9)

ηK (x) = max
k=1,...,K


g0(x̂k)+

nx
j=1

gj(x̂k)xj

, (10)

and where x̂K+1 = argminx∈XηK (x).
Now, rather than solving MP(ÂK) ‘‘from scratch’’ in each itera-

tion as amathematical program defined by (7) and (8), Eqs. (9) and
(10) lead to a simple ‘‘update computation’’ for evaluating ηK (x),
and thus solvingMP(ÂK):

ηK (x)← max

ηK−1(x), g0(x̂K)+

nx
j=1

gj(x̂K)xj


∀ x ∈ X. (11)

By storing ηK−1(x) for each x ∈ X, the computational effort to
solveMP(ÂK)will not increase with K , as it tends to with standard
B&B. Algorithm 2 presents the modifications of Algorithm 1 that
convert standard BD into BD-E. BD-E is simply a particular imple-
mentation of BD, so Benders’ proof of correctness [3] still applies.

To solve MP(Â) as described above, BD-E must generate every
x ∈ X. Let us assume that X is defined through a single knapsack
constraint

X ≡

x ∈ {0, 1}nx | ax ≤ b


, (12)

Download English Version:

https://daneshyari.com/en/article/1142059

Download Persian Version:

https://daneshyari.com/article/1142059

Daneshyari.com

https://daneshyari.com/en/article/1142059
https://daneshyari.com/article/1142059
https://daneshyari.com

