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a b s t r a c t

The Basic Affine Jump Diffusion (BAJD) process is widely used in financial modeling. In this paper, we
develop an exact analytical representation for its transition density in terms of a series expansion that
is uniformly-absolutely convergent on compacts. Computationally, our formula can be evaluated to high
level of accuracy by easily adding new termswhich are given explicitly. Furthermore, it can be easily gen-
eralized to give an analytical expression for the transition density of the subordinate BAJD process which
is more realistic than the BAJD process, while existing approaches cannot.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider the Basic Affine Jump Diffusion (BAJD) process in-
troduced in Duffie and Gârleanu [13], which is the unique strong
solution to the following stochastic differential equation:

dXt = κ(θ − Xt)dt + σ

XtdBt + dJt , X0 = x ≥ 0.

Here κ, θ, σ > 0 are the rate of mean reversion, the long-run
mean, and the volatility coefficient, respectively. J := (Jt)t≥0 is a
compound Poisson process with arrival rateϖ ≥ 0, and its jumps
are exponentially distributed with mean µ > 0. When the Feller
condition 2κθ ≥ σ 2 is satisfied, zero is an unattainable bound-
ary and the state space of this process, denoted by E, is given by
E = (0,∞) (Cheridito et al. [8]). If 0 < 2κθ < σ 2, the process is
instantaneously reflected at zero and E = [0,∞). When ϖ ≡ 0
(i.e., J ≡ 0) the BAJD process reduces to the Cox, Ingersoll, and
Ross [9] (CIR) process.

The BAJD process has found many applications in finance. For
instance, it is used to model the default intensity in credit risk
applications (see, e.g., Duffie and Gârleanu [13], Mortensen [24],
Brigo and El-Bachir [5,6], and Eckner [15]), the short-rate process
in interest rate markets (see, e.g., Brigo and Mercurio [7]) and the
volatility of an asset (see, e.g., Duffie et al. [14], Eraker et al. [17],
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and Eraker [16]). In energy markets, the BAJD process is used as
the background process for modeling the spot price of electricity
(Li et al. [21]).

In these applications, one is interested in computing expecta-
tions of the form

P α
t f (x) := Ex


e−α

 t
0 Xuduf (Xt)


(α ≥ 0).

In financial terms, f is the payoff function and X is the default
intensity factor in credit risk applications, or the short rate in
interest rate models, or the spot price (in such case we are
concerned with α = 0). The collection of the operators (P α

t )t≥0
forms a Feynman–Kac (FK) semigroup of contractions on Bb(E),
the space of Borel-measurable and bounded functions on E. The
kernel of the BAJD semigroup is Sub-Markovian as P α

t 1 ≤ 1. It is
absolutely continuous w.r.t. the Lebesgue measure and we denote
its density by pα(t, x, y), i.e.,

P α
t f (x) =


E
f (y)pα(t, x, y)dy. (1.1)

Once pα(t, x, y) is known, the integral in (1.1) can be obtained
either analytically or numerically.

In spite of the extensive use of the BAJD process in applications,
to our best knowledge, pα(t, x, y) is unknown in any analytical
form. In the literature, there exist two approaches for computing
pα(t, x, y). It is well known that the Laplace transform is given by
(cf. Duffie and Gârleanu [13])

P α
t e−zx

= Ex


e−α

 t
0 Xudue−zXt


= C(ϖ, α, z; t)D(ϖ, α; t)

× A(α, z; t) exp{−B(α, z; t)x}, z, α ≥ 0 (1.2)
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where

A(α, z; t) :=

 2εe(κ+ε)t/2

2ε + (ε + κ + zσ 2)(eεt − 1)

b
,

B(α, z; t) :=
2α(eεt − 1)+ z(ε − κ)eεt + z(ε + κ)

2ε + (ε + κ + zσ 2)(eεt − 1)
,

C(ϖ, α, z; t)

:=


1 +

(eεt − 1)

ε + κ + zσ 2

+ µ(2α + z(ε − κ))


2ε(1 + zµ)

−ϖa

,

(1.3)

D(ϖ, α; t) := exp

−ϖ

κ + ε

2ε

 b

b − 1


t

,

with

a :=
2µ

σ 2 − 2µκ − 2αµ2
, b :=

2µε
σ 2 + µ(ε − κ)

,

ε :=


κ2 + 2ασ 2, and b :=

2κθ
σ 2

.

(1.4)

The formula can be obtained following the theory of affine pro-
cesses (Duffie et al. [12]) to solve the corresponding generalized
Riccati equation. Thus one approach to obtain pα(t, x, y) is to invert
the Laplace transform numerically. The other approach approxi-
mates the transition density either by polynomial approximations
(Filipovic et al. [18]) or by approximations of the Kolmogorov for-
ward/backward PIDE (Yu [31]).

In this paper, we derive an exact analytical expression for
pα(t, x, y) in terms of multiple infinite series which are uniformly-
absolutely convergent on compacts. A series


∞

n=0 fn(x) is said to
converge uniformly-absolutely convergent if


∞

n=0 |fn(x)| converges
uniformly (a series of functions satisfying the Weierstrass’s crite-
rion for uniform convergence is uniformly-absolutely convergent,
see, e.g., Itô [19], Definition 435.A, p.1647). As a by-product of our
result for pα(t, x, y), we also obtain the stationary density of the
BAJD process.

In general, when the Laplace transform of a function is known,
the function can be recovered from Laplace inversion via the
Bromwich integral. In our case, we first derive an alternative
representation for the Laplace transform P α

t e−zx based on the
spectral representation of the FK semigroup of the CIR process (Cox
et al. [9]) and the binomial expansion. This representation allows
us to calculate the Laplace inversion analytically.

To implement the existing closed-form approximations, one
typically first fixes the number of terms to be used and then
uses symbolic computational software to obtain the formula for
these terms. Once the formula is obtained and stored, the subse-
quent evaluation at given parameter values can be done instanta-
neously. However, a potential drawback is that, one usually does
not know a priori how many terms need to be used to achieve a
certain level of accuracy, and adding a new term that has not been
pre-computed can be costly. In contrast, in our expansion, every
term is given explicitly and one can easily add a new term if it
is needed to improve accuracy. In Section 4, we compare the ap-
proximation developed in Filipovic et al. [18] with our method,
and it will be shown that the approximation formula which uses
the first two to four terms can have quite significant error. An-
other nice feature of our method is that it can be easily gener-
alized after subordination while the existing approaches cannot.
The BAJD process is quite unrealistic in that it can only jump up-
ward. Applying subordination to it allows us to develop more re-
alistic models with two-sided jumps that are mean-reverting (see
e.g., Boyarchenko and Levendorskii [4], Lim et al. [22], Mendoza-
Arriaga and Linetsky [23] for applications of subordination to other
processes in finance). Fig. 1 illustrates typical sample paths for

(a) the CIR process X , (b) the BAJD process X , and (c) the Subor-
dinate BAJD (SubBAJD) process Y . All three processes are mean re-
verting, the BAJD process exhibits only positive jumps, while the
SubBAJD process exhibits mean reverting (positive and negative)
jumps without leaving the state space E.

The rest of the paper is organized as follows. In Section 2,
we obtain analytical representations for pα(t, x, y) and P α

t f (x). In
Section 3, we extend these results to the case with subordination.
Section 4 presents numerical examples. All proofs are collected in
the Appendix.

2. Analytical formula for pα(t, x, y)

We make the following important observation: when ϖ = 0,
since the BAJD process becomes the CIR process and C(0, α, z; t) =

1, D(0, α; t) = 1, the term A(α, z; t) exp{−B(α, z; t)x} is the
Laplace transform of the CIR process. Hence we can rewrite
Eq. (1.2) as

P α
t e−zx

= C(ϖ, α, z; t)D(ϖ, α; t) P α
t e−zx,

x ∈ E, z, α, t ≥ 0

where P α
= (P α

t )t≥0 is the FK semigroup of the CIR process
with killing rate αx. The FK semigroup of the CIR process can
be represented by an eigenfunction expansion for functions that
belong to L2(E,m) where m(dx) = m(x)dx is the CIR’s speed
measure with its density given by m(x) =

2xb−1

σ 2 e−2κx/σ 2
. Hence,

from Proposition 9 in Davydov and Linetsky [10], for all f ∈

L2(E,m)we have

P̃ α
t f (x) = Ex[e−α

 t
0 Xuduf (Xt)] =

∞
n=0

cne−λntϕn(x),

cn =


E
f (x)ϕn(x)m(x)dx, (2.5)

where for n = 0, 1, . . . ,

λn = nε +
b
2
(ε − κ) ,

ϕn(x) = Nαn e
((κ−ε)x)/σ 2

Lb−1
n


2xε
σ 2


,

Nαn =


σ 2n!

20(b + n)


2ε
σ 2

b/2

,

(2.6)

with the variables b and ε defined in (1.4), and where Lνn(x) are the
generalized Laguerre polynomials. It is straightforward to verify
that for all z ≥ 0, e−zx

∈ L2(E,m), hence we can calculate
the Laplace transform of the CIR process using eigenfunction
expansions. In particular, the expansion coefficients cn entering
into the expansion (2.5) for the function f (x) = e−zx, z ≥ 0, are
available in close form (the calculation details are omitted), and
they are given by

cn(z) =
1
Nαn

κ − ε + σ 2z
κ + ε + σ 2z

n 2ε
κ + ε + σ 2z

b
. (2.7)

Lemma 1. The spectral expansion (2.5) for the function f (x) = e−zx,
is uniformly-absolutely convergent on compacts for x, z and t.

The function C(ϖ, α, z; t) can also be expanded in series such
that time t enters the expression in an exponential form.

Lemma 2. Define Q (z) :=


1
b

−
1
aε


1

µz+1


with a, b and ε defined

as in (1.4). Then, the function C(ϖ, α, z; t) of Eq. (1.3) accepts the
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