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a b s t r a c t

In this paper, we consider a nonsmooth multiobjective semi-infinite mathematical programming prob-
lems with equilibrium constraints (MOSIMPECs). We introduce the concept of Mordukhovich stationary
point for the nonsmooth multiobjective semi-infinite mathematical programming problems with equi-
librium constraints in terms of the Clarke subdifferentials. Further, we establish that the M-stationary
conditions introduced in this paper are strong KKT type sufficient optimality conditions for the nons-
mooth multiobjective semi-infinite mathematical programming problems with equilibrium constraints
under generalized invexity assumptions. We also illustrate our result with an example.

© 2016 Published by Elsevier B.V.

1. Introduction

Kanzi [18] derived strong Karush–Kuhn–Tucker necessary and
sufficient optimality conditions for a nondifferentiablemultiobjec-
tive semi-infinite programming problems with Lipschitzian data
under invexity assumptions. Recently, Mishra and Jaiswal [22] de-
fined a semi-infinite mathematical programming problem with
equilibrium constraints (SIMPEC) and established optimality con-
ditions and duality for the SIMPEC.

A semi-infinite programming problem (SIP) is an optimiza-
tion problem on a feasible set described by infinitely many of
inequality constraints. We can find many applications of SIP in
different fields such as Chebyshev approximation, robotics, math-
ematical physics, engineering design, optimal control, transporta-
tion problems, fuzzy sets, cooperative games, robust optimization,
etc. (see, Hettich and Kortanek [17] and Polak [29]). We refer to
[13,19,31–34] for more details and applications related to SIP. A
semi-infinite multiobjective optimization problem is the simulta-
neously minimization of finitely many scalar objective functions
subject to an arbitrary (possibly infinite) set of constraint functions.
We refer to the recent results [7,10,11] and the references therein
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for more details related to semi-infinite multiobjective optimiza-
tion problem.

Mathematical programs with equilibrium constraints (MPECs)
have drawn attention of researchers in the recent years [2,8,9,
14–16,20,27,23,35,36]. Mathematical programs with equilibrium
constraints arise frequently in various real world problems, e.g., in
chemical process engineering [30] and hydro-economic river basin
model [6].

In this paper, we consider the following multiobjective semi-
infinite mathematical programming problem with equilibrium
constraints (MOSIMPEC):

(MOSIMPEC) min (f1(x), . . . , fm(x))
subject to: gj(x) ≤ 0, j ∈ J, h(x) = 0,
G(x) ≥ 0, H(x) ≥ 0, ⟨G(x),H(x)⟩ = 0,

where J is an arbitrary index set, fi : Rn
→ R and gj : Rn

→

R ∪ {+∞} are locally Lipschitz functions. Also we assume that
h : Rn

→ Rp,G : Rn
→ Rl and H : Rn

→ Rl are functions
with locally Lipschitz components.

To the best of our knowledge, there are only a few paper on op-
timality conditions for multiobjective mathematical programming
problemwith equilibrium constraints (MOMPEC); see, Bao et al. [2]
and Mordukhovich [26].

Motivated by the works of Kanzi [18], Movahedian and
Nobakhtian [27] and Mishra and Jaiswal [22], we extend the

http://dx.doi.org/10.1016/j.orl.2015.12.007
0167-6377/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.orl.2015.12.007
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2015.12.007&domain=pdf
mailto:bhu.skmishra@gmail.com
http://dx.doi.org/10.1016/j.orl.2015.12.007


Y. Pandey, S.K. Mishra / Operations Research Letters 44 (2016) 148–151 149

definition of Mordukhovich stationary point (M-stationary point)
to the MOSIMPEC in terms of the Clarke subdifferential. Further,
we derive strong KKT type sufficient optimality conditions for the
MOSIMPEC under pseudoinvexity and quasiinvexity assumptions.

The paper is organized as follows: in Section 2, we give some
preliminaries, definitions and results. In Section 3, we establish
strong KKT type sufficient optimality conditions for theMOSIMPEC
under pseudoinvexity and quasiinvexity assumptions.

2. Definitions and preliminaries

In this section, we give some preliminary definitions and
results, which will be used in the sequel.

The following concepts and results are taken from Clarke [12]:
Let x ∈ Rn and let f : Rn

→ R be a locally Lipschitz function.
The Clarke directional derivative of f at x in the direction v ∈ Rn,
and the Clarke subdifferential of f at x are respectively given by

f o(x; v) = lim sup
y→x,t↓0

f (y + tv) − f (y)
t

,

∂c f (x) =

ξ ∈ Rn

: f o(x; v) ≥ ⟨ξ, v⟩ , ∀v ∈ Rn .

Theorem 1. Let f and g be functions fromRn toRwhich are Lipschitz
near x̄. Then,

f o(x̄; v) = max{⟨ξ, v⟩ : ξ ∈ ∂c f (x̄)},
∂c(λf + g)(x̄) ⊂ λ∂c f (x̄) + ∂cg(x̄), ∀λ ∈ R.

Theorem 2. Let f be function from Rn to R which are Lipschitz near
x̄. Then, the function v → f o(x̄; v) is finite, positively homogeneous,
subadditive on Rn and ∂c f (x̄) is a nonempty, convex, compact subset
of Rn.

The following definitions are taken fromMishra andGiorgi [21].

Definition 1. Let η : Rn
× Rn

→ Rn be a kernel function and let
f : Rn

→ R be locally Lipschitz on S ⊂ Rn. Then, f is said to be:

(i) quasiinvex at x̄ with respect to η if for any x ∈ S and any
ξ ∈ ∂c f (x̄), one has

f (x) ≤ f (x̄) H⇒ ⟨ξ, η(x, x̄)⟩ ≤ 0,

(ii) pseudoinvex at x̄ with respect to η if for any x ∈ S and any
ξ ∈ ∂c f (x̄), one has

⟨ξ, η(x, x̄)⟩ ≥ 0 H⇒ f (x) ≥ f (x̄)

(iii) strictly pseudoinvex at x̄with respect to η if for any x ∈ S, x ≠

x̄ and any ξ ∈ ∂c f (x̄), one has

⟨ξ, η(x, x̄)⟩ ≥ 0 H⇒ f (x) > f (x̄).

The following concept of efficiency was introduced in [28]. For
recent developments in the field of vector optimization, we refer
to the monograph [1] and the references therein.

Definition 2. Let S be a feasible region of MOSIMPEC. A vector
x̄ ∈ S is said to be efficient solution of the MOSIMPEC if for all
x ∈ S, one has

f (x) − f (x̄) := (f1(x) − f1(x̄), . . . , fm(x) − fm(x̄)) ∉ −Rm
+

\ {0}.

Definition 3. Let S be a feasible region of MOSIMPEC. A vector
x̄ ∈ S is said to be weak efficient solution of the MOSIMPEC if for
all x ∈ S, one has

f (x) − f (x̄) := (f1(x) − f1(x̄), . . . , fm(x) − fm(x̄)) ∉ −intRm
+

\ {0}.

Given a feasible vector x̄ for the MOSIMPEC, we define the
following index sets:
J(x̄) := {j ∈ J : gj(x̄) = 0},
α := α(x̄) = {i = 1, 2, . . . , l : Gi(x̄) = 0,Hi(x̄) > 0},
β := β(x̄) = {i = 1, 2, . . . , l : Gi(x̄) = 0,Hi(x̄) = 0},
γ := γ (x̄) = {i = 1, 2, . . . , l : Gi(x̄) > 0,Hi(x̄) = 0},
T+

:= {i : λh
i > 0}, T−

:= {i : λh
i < 0},

β+
:= {i ∈ β : λG

i > 0, λH
i > 0},

β+

G := {i ∈ β : λG
i = 0, λH

i > 0},

β−

G := {i ∈ β : λG
i = 0, λH

i < 0},

β+

H := {i ∈ β : λH
i = 0, λG

i > 0},

β−

H := {i ∈ β : λH
i = 0, λG

i < 0},

α+
:= {i ∈ α : λG

i > 0}, α−
:= {i ∈ α : λG

i < 0},

γ +
:= {i ∈ γ : λH

i > 0}, γ −
:= {i ∈ γ : λH

i < 0}.

3. Strong KKT sufficient optimality conditions

The following definition is an extension of Definition 3.1 of
Movahedian and Nobakhtian [27] for the MOSIMPEC in terms of
the Clarke subdifferential.

Definition 4 (MOSIMPEC M-Stationary Point). A feasible point x̄ of
MOSIMPEC is called MOSIMPEC Mordukhovich stationary point
(MOSIMPEC M-stationary point) if there exist λ = (λh, λG, λH) ∈

Rp+2l, θi > 0, i ∈ {1, . . . ,m} and λ
g
j ≥ 0, j ∈ J(x̄), with λ

g
j ≠ 0 for

at most finitely many indexes such that the following conditions
hold:

0 ∈

m
i=1

θi∂c fi(x̄) +


j∈J(x̄)

λ
g
j ∂cgj(x̄) +

p
i=1

λh
i ∂chi(x̄)

−

l
i=1

[λG
i ∂cGi(x̄) + λH

i ∂cHi(x̄)],

λG
γ = 0, λH

α = 0, either λG
i > 0, λH

i > 0 or

λG
i λ

H
i = 0, ∀ i ∈ β.

In the following theorem we prove that the MOSIMPEC
M-stationary conditions turn into a strong KKT type sufficient op-
timality conditions for weakly efficient solution of the MOSIMPEC.

Theorem 3. Let x̄ be a MOSIMPEC M-stationary point. Suppose that
each fi (i = 1, . . . ,m) is pseudoinvex at x̄, gj(j ∈ J(x̄)), hi(i ∈

T+), −hi (i ∈ T−),Gi(i ∈ α−
∪β−

H ), −Gi (i ∈ α+
∪β+

H ∪β+),Hi(i ∈

γ −
∪ β−

G ), −Hi(i ∈ γ +
∪ β+

G ∪ β+) are quasiinvex at x̄ with respect
to a common kernel η. If α−

∪γ −
∪β−

G ∪β−

H = φ, then x̄ is a weakly
efficient solution for MOSIMPEC.

Proof. Suppose on the contrary that x̄ is not a weakly efficient
solution for MOSIMPEC. Then there exists a feasible point x for
MOSIMPEC such that

fi(x) < fi(x̄) ∀i = 1, . . . ,m.

Since each fi is pseudoinvex with kernel η, we have

⟨ξi, η(x, x̄)⟩ < 0, ∀ ξ ∈ ∂c fi(x̄). (1)

Also θi > 0 for all i ∈ {1, . . . ,m}, we get
m
i=1

θiξi, η(x, x̄)


< 0, (2)

where
m

i=1 θiξi ∈
m

i=1 θi∂c fi(x̄).
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