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We consider the capacity portfolio investment problem with flexible machines facing multiple products
and demand uncertainty. For the problem of maximizing the service level, we approximate the objective
with the largest inscribing sphere and provide a linear program formulation. We show, under certain
conditions, that the optimal flexibility configuration consists only of dedicated machines and machines
capable of producing only two types of products. Our work not only strengthens the sufficiency of limited
flexibility in capacity investment but also suggests a novel way for approximating flexible system design
problems in a computationally tractable form.
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1. Introduction and literature review

This paper studies the problem of capacity portfolio investment
under demand uncertainty. For example, when a firm manufac-
tures several products, which flexible machines should be used and
how much capacity should be invested?

The studies of process flexibility stem from the seminal work of
Jordan and Graves [ 12], who have shown that limited flexibility can
reap most of the benefits from the fully flexible machines. In the
limited flexible system that they have considered, machines pro-
duce only 2 products each and form a “2-chain” structure (a long
circle connecting all the machines and products). Subsequently,
desirable properties of the 2-chain have been shown. Chou et al. [6]
have shown that the 2-chain structure can achieve more than 90%
benefit of full flexibility if demand follows a certain demand distri-
bution. Simchi-Levi and Wei [15] have argued that the 2-chain is
the best flexibility structure in a balanced system where all ma-
chines are 2-flexible and each product is produced from 2 ma-
chines. However, Desir et al. [11] have shown that 2-chain may
not be optimal even with independent and identically distributed
demand distributions if the design limits the number of possible
“edges” to 2N, where N is the total number of products. Wang and
Zhang[17] have provided a closed-form distribution-free bound on
the performance of general k-chain. Deng and Shen [ 10] have char-
acterized the distribution-free performance of any given flexibility
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configuration. Chen et al. [5] have analyzed the problem of how to
design an optimal sparse flexibility structure which uses the small-
est number of flexibility links but achieves at least 1 — ¢ fraction
of the sales under full flexibility. Chou et al. [7] have studied the
worst case performance of generalized sparse flexibility structure.
Other works that calibrate and design sparse flexibility structure
with fixed capacity investment include [8,13,14,9].

In comparison, capacity investment involving both dedicated
and flexible machines has been investigated by Van Mieghem [ 16].
His 2-product model does not readily generalize to an arbitrary
number of products since the number of possible configurations is
exponential in the number of products. Bassamboo et al. [2] have
studied a similar problem using newsvendor networks, where only
two “adjacent levels of flexibility” is needed in capacity invest-
ment when system is symmetric, and Bassamboo et al. [1] have
extended to the case with a submodular set of products that a
machine can process. A similar investigation in [3] with a paral-
lel queuing system has shown that only dedicated machines and
flexible machines capable of producing only 2 products is needed
asymptotically.

In a flexible resource selection setting similar to [2], we consider
the problem of maximizing the joint service level (the probability
of having no stock-out) subject to a budget constraint. (In compari-
son, the objective of [2] is to minimize the penalty cost that is linear
in shortage amounts.) Instead of working directly with this objec-
tive function, we use a lower bound, which we obtain by working
with the notion of the largest inscribed sphere, and consequently
we build up a linear program formulation for approximating the
flexible system design problem.
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The main contributions of this work are summarized as be-
low: (1) We study the flexible system design problem from a per-
spective of service levels. By approximating the objective with its
largest inscribed sphere, we rewrite the problem into a linear pro-
gram (LP) as a heuristic. To the best of our knowledge, we are the
first one to apply this idea to the flexible system design problem.
(2) We show that our LP heuristic has a good performance under
uniform or normal demands. For general settings, where the de-
mand support can be characterized or approximated by a simple
polytope, our LP heuristic will still work well. In addition, while
our objective is to maximize the joint service level, our LP heuris-
tic solution also leads to a good performance of fill rate (the frac-
tion of demand satisfied). (3) While we do not impose any a pri-
ori structure on flexibility (such as the chaining structure of [15]),
we can show the following property for the approximate problem
with the above-mentioned lower bound as the objective—that its
optimal solution uses only dedicated machines and the machines
capable of producing only 2 products, which strengthens the con-
vention that limited flexibility, particularly limited to 2 products,
is adequately sufficient in designing flexibility.

2. Problem description

Let the products be indexed by i, wherei = 1,...,N, and N
be the total number of products. Let D = (D, ..., Dy) denote
the random demand vector. A machine can produce one or more
of the products, and we say a machine has level-k flexibility if it is
designed to manufacture k different products. We assume that the
production rate of a machine is constant and independent of the
product and machine type.LetS C {1, ..., N} denote the capacity
type, and let X = (Xs)scq1,....n) be the decision variable associated
with how much capacity would be invested on each machine. Let
¢s denote the capacity installation cost for machine type S. Also, let
B be the investment budget.

Our objective is to maximize the joint service level, the
probability that all demands are satisfied under the given capacity
decision x. Given the demand realization (d4, ..., dy), it can be
satisfied if there is a feasible allocation {us;} satisfying the following
inequalities:

usi > d; Vi,
SC{1,...,N}:SN(i}£0 ie(1,...,N}:SN{i) 0
and ug >0 VS, i.
It can be shown, using the max-flow min-cut theorem, that

(dq,...,dy) can be satisfied under capacity investment x =
(Xs)scqi,...nyifand only if (dq, ..., dy) € £2(x), where

Sas Y x

je] {SyNs#0}

usi < xs VS,

2x) = [(d’,...,d;\,)

foreach]g{l,...,N}]. (1)

Thus, the problem of maximizing the joint service level under a
budget constraint can be formulated as:

Z CsXs < B, xs >0

max {P(D € 2(x))
SC{1,...,N}

foreacth{],...,N}}. (2)

Note that the number of decision variables is exponential in N, and
thus may be difficult to solve when N is large. Thus, we first analyze
a symmetric and uniformly distributed demand case (Section 3),
and then discuss possible extensions (Section 4).

3. Lower bound model: symmetric uniform demand

Since the exact formulation in (2) can be difficult to analyze,
we consider instead an approximate model where its objective is
replaced with a lower bound. In this section, we are to establish
a lower bound approximation model under symmetric and uni-
formly distributed demand. We will show that the lower bound
model is equivalent to a linear program problem (LP) and there-
fore leads to attractive properties in its optimal solution. Further
we will discuss the effectiveness of our approximation, compared
to the exact problem (2).

We start by introducing a few assumptions.

Assumption 1 (Symmetric Cost). All level-k flexibility has the same
unit cost denoted by sy, i.e., cs = s; for each S satisfying |S| = k.

Without loss of generality, we normalize s; = 1. Since cs is
increasing in S, it follows that 1 = s; < sy < --- < sp.

Assumption 2 (Uniform and Symmetric Demand). Demand D;,
i=1,...,N,isindependently and uniformly distributed on [0, 1].

Under Assumption 2, the joint service level is equivalent to the
volume of the intersection between the feasible production region
£2(x) and demand support [0, 1]V, but the objective function in (2)
may not behave as well. For example, if N = 2, it can be shown
that P(D € 2(x)) = (x; + X12) (X2 + X12) — (x12)?/2, given that
0 < Xx; +x12 < 1(i = 1, 2), which is neither convex nor concave
in (X1, X2, X12). (See Fig. 1(a) for an illustration.) To avoid the non-
convexity of the objective function, we propose a lower bound
approximation model. This model is based on a novel idea of an
inscribed sphere, and it is easy to solve since it can be transformed
to an LP of a reasonable size.

3.1. The lower bound model: description and analysis

Instead of computing the volume of the intersection between
£22(x) and [0, 1]V, we compute the volume of the largest inscribed
sphere within it. Clearly, the sphere’s volume provides a lower
bound to the joint service level. (See Fig. 1(b) for an illustration.)

Consider a sphere centered at p = (py, ..., py) and radius r.
The volume of this N-dimensional sphere is

Nz

" 3)
—T

N )
r(z+1
where T indicates the Gamma function I'(x) = [;* t*'e~" dt.
Note that the volume of the sphere is strictly increasing in r,
thus the maximization of the volume is equivalent to maximizing
r. If the sphere is inside the intersection between the feasible
production region £2(x) and the support of the uniform demand
distribution, we must have

p € 2(x), (4)
r < dist(p, 0x$2(x)), and (5)
r<p; and r<1-—p; Vi, (6)

where the first condition states that the center p should be in £2 (x),
and the second condition requires that the radius of the sphere
should not exceed the distance from the center p to the boundary
of §2(x) denoted by 0,4£2(x). The third condition ensures that the
sphere lies within the support of demand distribution, i.e. the unit
cube [0, 1]V.

From (1), the boundaries of £2(x) are the hyperplanes obtained
by fixing each inequality to equality. By referring to the formula of
the Euclidean distance from a point to a hyperplane, one can show
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