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a b s t r a c t

In this paper, we present a unified approach for studying vector variational inequality problems in finite
dimensional spaces via asymptotic analysis.We introduce a class ofweak normalmapping by virtue of the
vector-valued indicator function. Then, we employ the obtained results to propose a class of proximal-
type method to solve the vector variational inequality problems, carry out convergent analysis on the
method and prove convergence of the generated sequence to a solution of the vector variational inequality
problems under some mild conditions.
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1. Introduction

Let H be a real Hilbert space with inner product ⟨., .⟩, and let
T : H ⇒ H be a maximal monotone operator. Consider the follow-
ing problem: finding an x ∈ H such that

0 ∈ T (x).

This problem is very important in both theory and methodology
of mathematical programming and some related fields. One of the
efficient algorithms for the above problem is the proximal point al-
gorithm (PPA, in short). This algorithmwas first introduced byMar-
tinet [18] and its celebrated progress was attained in the work of
Rockafellar [20]. The classical proximal point algorithm generated
a sequence {zk} ⊂ H with an initial point z0 through the following
iteration

zk+1
= (I + ckT )−1zk (1.1)

where {ck} is a sequence of positive real numbers bounded away
from zero. Rockafellar [20] proved that for a maximal monotone
operator T , the sequence {zk}weakly converges to a zero of T under
some mild conditions. From then on, many works have been de-
voted to investigate the proximal point algorithm, its applications
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and generalizations (see [1,16,12,19,24] and the references therein
for scalar-valued problems; see [3,4,9,7,6] for vector-valued opti-
mization problems).

On the other hand, the concept of vector variational inequal-
ity was firstly introduced by Giannessi [12] in finite dimensional
spaces. The vector variational inequality problems have found a lot
of important applications in multiobjective decision making prob-
lems, network equilibrium problems, traffic equilibrium problems
and so on. Because of these significant applications, the study of
vector variational inequalities has attracted wide attention. Chen
and Yang [10] investigated general vector variational inequality
problems and vector complementary problems in infinite dimen-
sional spaces. Chen [5] considered the vector variational inequal-
ity problems with a variable ordering structure. Yang [25] studied
the inverse vector variational inequality problems and their rela-
tions with some vector optimization problems. Recently, Huang,
Fang and Yang [15] obtained some necessary and sufficient con-
ditions for the nonemptiness and compactness of the solution set
of a pseudomonotone vector variational inequality defined in a
finite-dimensional space. Through the last twenty years of de-
velopment, existence results of solutions, duality theorems and
topological properties of solution sets of several kinds of vector
variational inequalities have been derived. One can find a fairly
complete review of the main results about vector variational in-
equalities in the monograph [8] and in the survey paper [13].

However to the best of our knowledge, there is no numerical
method has been designed for solving vector variational inequality
problems, even no conceptual one. Motivated by the classical
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results [20] of Rockafellar’s, in this paper we firstly try to construct
a class of vector-valued proximal-type method for solving a weak
vector variational inequality problem and prove the sequence
generated by our method converges to a solution of the weak
vector variational inequality problem under somemild conditions.

The paper is organized as follows.
In Section 2, we present some basic concepts, assumptions and

preliminary results. In Section 3, we introduce the proximal-type
method and carry out convergence analysis on the method.

2. Preliminaries

In this section, we present some basic definitions and proposi-
tions for the proof of our main results.

Let C = Rm
+

⊂ Rm and C1 = {x ∈ Rm
+
| ∥x∥ = 1}. We define, for

any y1, y2 ∈ Rm,

y1 ≤C y2 if and only if y2 − y1 ∈ C;

y1 ≰intC y2 if and only if y2 − y1 ∉ intC .

The extended space of Rm is R̄m
= Rm

∪ {−∞C , +∞C }, where
−∞C is an imaginary point, each of the coordinates is −∞ and
the imaginary point +∞C is analogously understood (with the
conventions∞C +∞C = ∞C ,µ(+∞C ) = +∞C for each positive
number µ). The point y ∈ Rm is a column vector and its transpose
is denoted by y⊤. The inner product in Rm is denoted by ⟨·, ·⟩.

Let X0 be a nonempty subset of Rn and let Ti : X0 → Rn, i ∈

[1, . . . ,m] be vector-valued functions. Let T := (T1, . . . , Tm) be a
n × m matrix which columns are Ti(x), and let

T (x) = (T1(x), . . . , Tm(x)),
T (x)⊤(v) = (⟨T1(x), v⟩, . . . , ⟨Tm(x), v⟩)⊤

for every x ∈ X0 and v ∈ Rn. For any λ ∈ C1, a mapping λ(T ) :

X0 → Rn is defined by

λ(T )(x) = Σm
i=1λiTi(x), x ∈ X0. (2.1)

Definition 2.1 ([12]). A vector variational inequality (VVI in short)
is a problem of finding x∗

∈ X0 such that

(VVI) T (x∗)⊤(x − x∗) ≰C\{0} 0, ∀x ∈ X0,

where x∗ is called a solution of problem (VVI).

Definition 2.2 ([8]). Aweak variational inequality (WVVI in short)
is a problem of finding x∗

∈ X0 such that

(WVVI) T (x∗)⊤(x − x∗) ≰intC 0, ∀x ∈ X0,

where x∗ is called a solution of problem (WVVI). Denote by X∗ the
solution set of problem (WVVI).

Let λ ∈ C1, consider the corresponding scalar-valued variational
inequality problem of finding x∗

∈ X0 such that:

(VIPλ) ⟨λ(T )(x∗), x − x∗
⟩ ≥ 0, ∀x ∈ X0.

Denote by X∗

λ be the solution set of (VIPλ).
It is worth noticing that the partial order ≰intC is closed in the

sense that if xk → x∗ as k → ∞, xk ≰intC 0, thenwe have x∗
≰intC 0.

This is because of the closeness of the set S =: Rm
\ (−intC).

Definition 2.3 ([15]). Let X0 ⊂ Rn be nonempty, closed and
convex, and F : X0 → Rn be a single-valued mapping.

(i) F is said to be monotone on X0 if, for any x1, x2 ∈ X0, there
holds

⟨F(x1) − F(x2), x1 − x2⟩ ≥ 0.

(ii) F is said to be pseudomonotone X0 if, for any x1, x2 ∈ X0, there
holds

⟨F(x2), x1 − x2⟩ ≥ 0 ⇒ ⟨F(x1), x1 − x2⟩ ≥ 0.

Clearly, a monotone map is pseudomonotone.
Now we give the definitions of C-monotonicity of a matrix-

valued map.

Definition 2.4 ([8]). Let X0 ⊂ Rn be nonempty, closed and convex.
T : X0 → Rn×m is a mapping, which is said to be C-monotone on X0
if, for any x1, x2 ∈ X0, there holds

(T (x1) − T (x2))⊤(x1 − x2) ≥C 0.

Proposition 2.1 ([15]). Let X0 and T be defined as in Definition 2.4,
we have the following statements:
(i) T is C-monotone if and only if, for any λ ∈ C1, the mapping

λ(T ) : X0 → Rn defined by (2.1) is monotone.
(ii) if T is C-monotone, then for any λ ∈ C1, λ(T ) : X0 → Rn is

pseudomonotone.

Definition 2.5 ([14]). Let L ⊂ Rn×m be a nonempty set. The weak
and strong C-polar cones of L are defined, respectively, by

Lw0
C := {x ∈ Rn

: l(x) ≱C 0, ∀l ∈ L}; (2.2)

and

Ls0C := {x ∈ Rn
: l(x) ≤C 0, ∀l ∈ L}. (2.3)

Definition 2.6 ([8]). Let K ⊂ Rn be nonempty, closed and convex,
F : K ⊂ Rn

→ Rm
∪ {+∞C } be a vector-valued mapping. A n × m

matrix V is said to be a strong subgradient of F at x̄ ∈ K if

F(x) − F(x̄) − V⊤(x − x̄) ≥C 0 ∀x ∈ K .

A n × m matrix V is said to be a weak subgradient of F at x̄ ∈ K if

F(x) − F(x̄) − V⊤(x − x̄) ≰intC 0 ∀x ∈ K .

Denote by ∂w
C F(x̄) the set of weak subgradients of F on K at x̄.

Let K ⊂ Rn be nonempty, closed and convex. A vector-valued
indicator function δ(x | K) of K at x is defined by

δ(x | K) =


0 ∈ Rn, if x ∈ K ;

+∞C , if x ∉ K .

An important and special case in the theory of weak subgradient
is that when F(x) = δ(x | K) becomes a vector-valued indicator
function of K . By Definition 2.6, we obtain V ∈ ∂w

C δ(x∗
| K) if and

only if

V⊤(x − x∗) ≱intC 0 ∀x ∈ K . (2.4)

Definition 2.7. A set VNw
K (x∗) ⊂ Rn×m is said to be a weak nor-

mality operator set to K at x∗, if for every V ∈ VNw
K (x∗), the

inequality (2.4) holds.

Clearly, VNw
K (x∗) = ∂w

C δ(x∗
| K). As for the scalar-valued case,

from [21] we know that v∗
∈ ∂δK (x∗) = NK (x∗) if and only if

⟨v∗, x − x∗
⟩ ≤ 0 ∀x ∈ K (2.5)

where δK (x) is the scalar-valued indicator function of K . The
inequality (2.5) means that v∗ is normal to K at x∗.

Definition 2.8. Let VNw
K (.) : Rn ⇒ Rn×m be a set-valued mapping,

which is said to be a weak normal mapping for K , if for any y ∈ K ,
V ∈ VNw

K (y) such that

V⊤(x − y) ≱intC 0, ∀x ∈ K . (2.6)

VN s
K (.) is said to be strong normal mapping for K, if for any y ∈ K ,

V ∈ VN s
K (y) such that

V⊤(x − y) ≤C 0, ∀x ∈ K . (2.7)
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