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a b s t r a c t

Given the costs and a feasible solution for a linear program, inverse optimization involves finding new
costs that are close to the original ones and make the given solution optimal. We develop an inverse
optimization framework for countably infinite linear programs using the weighted absolute sum metric.
We reformulate this as an infinite-dimensional mathematical program using duality. We propose a
convergent algorithm that solves a sequence of finite-dimensional LPs to tackle it. We apply this to non-
stationary Markov decision processes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Countably infinite linear programs (CILPs) are infinite-dimen-
sional linear programs (LPs) that include a countable number of
variables and a countable number of constraints [3,9,10]. CILPs
arise in infinite-horizon planning applications such as production
planning, equipment replacement, and capacity expansion. Special
cases of CILPs includeminimumcost flowproblems on infinite net-
works [16,20]; infinite horizon stochastic programs [11]; LP for-
mulations of countable-state Markov decision processes (MDPs)
[10,13,15,19]; and problems in robust optimization [8].

Inverse optimization in n-dimensional LPs refers to the follow-
ing problem: given a feasible solution x∗

∈ ℜ
n to an LP with cost

vector c∗
∈ ℜ

n, find a d ∈ ℜ
n that (i) is as close (in an appropriate

distance metric) as possible to c∗, and (ii) makes x∗ optimal to a
new LP where the cost vector is d. Ahuja and Orlin [1] showed that
if we used the weighted absolute summetric inℜ

n, then this prob-
lem reduces to a finite-dimensional LP. Chan et al. [5] stated that
inverse optimization has been studied in the context of shortest
path problems; network and combinatorial optimization; integer
programming;mixed integer programming; and convex optimiza-
tion. Despite the recent surge of interest in CILPs, inverse optimiza-
tion has not yet been studied in the CILP context. The goal of this
paper is to develop an inverse optimization framework for CILPs.

We pursue a duality-based as in Ahuja and Orlin. However,
the difficulty is that unlike finite-dimensional LPs, weak duality,
complementary slackness, and strong duality may not hold in
general in primal–dual pairs of CILPs [3,8,14,17,18]. It is essential
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to embed the primal and the dual CILPs in appropriately chosen
sequence spaces to ensure that weak duality and complementary
slackness hold, and then to impose additional restrictions for
strong duality to hold. This task is rendered difficult owing to
mathematical pathologies in sequence spaces and has been called
the ‘‘Slater conundrum’’ [14]. The duality approach in Ghate [8]
allows for the broadest class of CILPs. That framework is therefore
utilized to cast CILP formulations here.

Following Ahuja and Orlin, we use the weighted absolute sum
metric. The weights are embedded in an appropriate sequence
space so that the corresponding metric is finite. We show that
the constraints in our inverse optimization problem can be equiv-
alently reformulated as a countably infinite set of linear con-
straints. We propose to solve a sequence of finite-dimensional
LPs to tackle the resulting infinite-dimensional inverse optimiza-
tion problem. We prove that accumulation points of any se-
quence of optimal solutions to these finite-dimensional LPs are
optimal to the inverse optimization problem. We also prove
that the sequence of optimal values of these finite-dimensional
LPs converges to the optimal value of the inverse optimization
problem. These results are applied to infinite-horizon non-
stationaryMDPs, thus extending recent work on inverse optimiza-
tion in infinite-horizon stationary MDPs [7]. Proofs are provided
in the supplementary material available via author’s website at
http://faculty.washington.edu/archis/orl-inverse-opt-suppl.pdf.

2. Review of duality in CILPs

We first review CILP duality results from Ghate [8]. The symbol
, means ‘‘defined as’’. We use N , {1, 2, . . .} to denote the set of
all natural numbers and let ℜ

N denote the space of all real-valued
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sequences. Let Z ⊆ ℜ
N be a sequence space. Generic sequences in

Z will often be denoted by c and will form the objective function
coefficients in our CILPs. Let b ∈ ℜ

N be a given sequence; and, for
i = 1, 2, . . . , let Ai· , (ai1, ai2, . . .) ∈ ℜ

N be the ith row of a given
doubly-infinite matrix A. Similarly, let A·j , (a1j, a2j, . . .) ∈ ℜ

N be
the jth column of this matrix. As is common in the existing litera-
ture,we assume that, for each i, only a finite number of entries inAi·
is non-zero; similarly, we assume that, for each j, only a finite num-
ber of entries in A·j is non-zero. This structure is ubiquitous (see
[17,18]) in Operations Research such as in shortest path formula-
tions of infinite-horizon dynamic programs with finite states and
actions [9]; minimum cost flow problems in infinite-staged net-
works with finite node degrees [16,20]; and CILP formulations of
infinite-horizon non-stationary MDPs with finite states and ac-
tions [10,12].

Now let X ⊆ ℜ
N be the subspace of all sequences x ∈ ℜ

N for
which

C1. the series C(x) ,


∞

j=1 cjxj converges for any c ∈ Z .
Let Y be the subspace of all y ∈ ℜ

N for which
C2. the series B(y) ,


∞

i=1 biyi converges; and
C3. for every x ∈ X , we have


∞

i=1 Li(x, yi) < ∞, where Li(x, yi) ,
∞

j=1 |aijxjyi| for each i = 1, 2, . . . .

Consider the following pair of primal–dual CILPs

(P) V (P) = inf
∞
j=1

cjxj (1)

∞
j=1

aijxj = bi, i = 1, 2, . . . , (2)

xj ≥ 0, j = 1, 2, . . . , (3)

x ∈ X, (4)

and

(D) V (D) = sup
∞
i=1

biyi (5)

∞
i=1

aijyi ≤ cj, j = 1, 2, . . . , (6)

y ∈ Y . (7)

Let F and G denote the feasible regions of these two problem,
respectively.

Theorem 2.1 (Weak Duality: Ghate [8]). For any x ∈ F and any y ∈

G,


∞

j=1 cjxj ≥


∞

i=1 biyi. Hence ∞ ≥ V (P) ≥ V (D) ≥ −∞

(here, the infimum over an empty set is interpreted as +∞ and the
supremum over an empty set is interpreted as −∞). Also, if x ∈ F
and y ∈ G are such that


∞

j=1 cjxj =


∞

i=1 biyi, then x is optimal to
(P) and y is optimal to (D), and thus strong duality holds.

Vectors x ∈ X and y ∈ Y are called complementary if xj

cj −

∞

i=1 aijyi


= 0 for each j = 1, 2, . . . .

Theorem 2.2 (Complementary Slackness: Ghate [8]).

1. Suppose x ∈ F and y ∈ G, and suppose x and y are complementary.
Then x is optimal to (P), y is optimal to (D), and V (P) = V (D).
Thus, strong duality holds in this case.

2. Suppose x is optimal to (P), y is optimal to (D), and V (P) = V (D)

(that is, strong duality holds). Then x and y are complementary.

For any increasing sequences of positive integers Nn and Mn,
consider the truncation given by

P(n) V (P(n)) = inf
Mn
j=1

cjxj (8)

Mn
j=1

aijxj = bi, i = 1, 2, . . . ,Nn, (9)

xj ≥ 0, j = 1, 2, . . . ,Mn. (10)

Let X∗(n) ⊆ X denote the (possibly empty) set of optimal solutions
to P(n). The dual of P(n) is

D(n) V (D(n)) = sup
Nn
i=1

biyi (11)

Nn
i=1

aijyi ≤ cj, j = 1, 2, . . . ,Mn. (12)

Let Y ∗(n) ⊆ Y denote the (possibly empty) set of optimal solutions
to D(n).

We use the product topology on sequence spaces in ℜ
N.

Theorem 2.3 (Strong Duality: Ghate [8]). Suppose there exist
the aforementioned sequences P(n) and D(n) of finite-dimensional
primal–dual problems and sets C ⊆ X and K ⊆ Y such that

C4. for each n, XC(n) ,

X∗(n)


C


≠ ∅;

C5. for each n, YK(n) ,

Y ∗(n)


K


≠ ∅;

C6. ∃ a sequence in XC(n) × YK(n) with a convergent subsequence
with a limit in C × K .

Then (P) and (D) have optimal solutions in C and K , and V (P) =

V (D).

The product topologies on X and Y are countable products of
the usualmetrizable topology onℜ; hence they aremetrizable (see
Theorem 3.36 on p. 89 of [2]). Every sequence in a compact set
in the product topology on X thus has a convergent subsequence;
similarly for Y (see Theorem 3.28 on p. 86 of [2]). Condition C6 thus
holds when C and K are compact. By the Tychonoff product the-
orem (see Theorem 2.61 on p. 52 of [2]), this compactness holds if
each component of optimal solutions to P(n) and each component
of optimal solutions to D(n) can be bounded independently of n.
See [8,17,18] for several applications where these conditions are
met.

3. Inverse optimization formulation

Now suppose that a fixed c∗
∈ Z is given. Also suppose that an

x∗
∈ X that is feasible to (P) is given. For each d ∈ Z , we will use

(Pd), for emphasis, to denote the CILP that is identical in form to
(P) but now with cost coefficients d. We will use (Dd) to denote
the dual of (Pd). Note that (Pd) and (Dd) satisfy C1–C3 and hence
weak duality as in Theorem 2.1 and complementary slackness as
in Theorem 2.2 hold for this primal–dual pair.

Following Ahuja and Orlin, we say that d ∈ Z is inverse feasible
with respect to x∗ if x∗ is an optimal solution to (Pd). Similarly, we
will use D(x∗) ⊆ Z to denote the set of all d ∈ Z that are inverse
feasible with respect to x∗. Our inverse optimization problem in-
volves finding a d ∈ D(x∗) ∩ C that is as close as possible to c
in the weighted absolute sum metric, where C , {d ∈ Z : lj ≤

dj ≤ uj, ∀j} is some compact set in the product topology on Z .
Here, the given lower and upper bound vectors l, u belong to Z . Let
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