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a b s t r a c t

Previous statistical tests showed that call center arrival data were consistent with a non-homogeneous
Poisson process (NHPP) within each day, but exhibit over-dispersion over multiple days. These tests are
applied to arrival data from an endocrinology clinic, where arrivals are by appointment. The clinic data
are also consistent with an NHPP within each day, but exhibit under-dispersion over multiple days. This
analysis supports a newGaussian-uniformarrival processmodel,withGaussian daily totals and uniformly
distributed arrivals given the totals.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

When building stochastic models to help improve the perfor-
mance of service systems, it is important to have an appropriate ar-
rival process model. Since the arrival rate typically varies strongly
over the day, the most common arrival process model is a nonho-
mogeneous Poisson process (NHPP). The Poisson property is math-
ematically supported when arrivals come from the independent
decisions of many different users who use the service system in-
frequently [2].

There is growing interest in testing the usual NHPP assumption
for arrival processes [1,3,7,8,13,12,21]. Kim andWhitt [12] applied
statistical tests to call center arrival data and found that (i) the
data are consistent with an NHPPwithin each day, but (ii) the daily
totals are more variable than Poisson; i.e., there is significant over-
dispersion over multiple days. Fig. 1 shows the arrival counts over
half hours. A casual glance shows no problem, but careful analysis
exposes the over-dispersion: The number of arrivals in each half-
hour interval is vastly different on five different Mondays on the
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same month. In the interval [11, 11.5], the sample mean number
of arrivals is 317.8, with sample variance 12699.2 and variance-
to-mean ratio 40.0. All of the half-hour intervals have variance-to-
mean ratios greater than 1, with minimum of 5.8 in the interval
[13, 13.5].

In this paper, we apply the statistical tests in [13,12] to arrival
data from an endocrinology clinic, where all arrivals are by ap-
pointment for individual doctors. Despite the strongly determin-
istic framework, we show that, because of (i) randomness in the
schedule, (ii) patient no-shows and (ii) early/late arrivals, the ac-
tual arrivals are distributed approximately as a Poisson process
(PP, NHPPwith constant rate) within each shift. However, the vari-
ance of the daily totals is significantly less than would be the case
for Poisson random variables; i.e., we provide evidence of under-
dispersion over multiple days. Based on this analysis, we propose
a new two-time-scale Gaussian-uniform arrival process model for
long-term planning for appointment-generated arrivals (which is
to be examined in future work).

We note that there is extensive literature on appointment
scheduling; see [4,6] for detailed reviews. While most of the early
models assume a simple deterministic arrival pattern, newmodels
are increasingly incorporating no-shows and non-punctuality, e.g.,
see [16,9] and references therein. There are also studies that show
empirical evidence of patient no-shows and non-punctual arrivals.
The estimated no-show rates vary across different services and
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Fig. 1. Arrival counts in half-hour intervals at a call center on five Mondays during
April 2001 (see [12] for details; VRI-Summit type arrival).

patient populations; the reported no-show rates are as low as 4.2%
at a general practice outpatient clinic in United Kingdom [18] and
as high as 31% at a family practice clinic [17].

Here is how the rest of this paper is organized: In Section 2 we
introduce our study data from an endocrinology outpatient clinic.
In Section 3 we compare scheduled arrivals and actual arrivals,
show the presence of no-shows and early and late arrivals, and
conduct statistical tests that show the arrivals are consistent with
a PP within shifts. In Section 4 we statistically substantiate under-
dispersion over multiple days. In Section 5 we propose stochastic
arrival process models based on our data analysis.

2. The study data

The appointment arrival data are from an endocrinology
outpatient clinic of a major teaching hospital in South Korea,
collected over a 13-week period from July 2013 to September 2013.
Sixteen doctors work in this clinic and patients arrive to the clinic
knowingwhich doctor theywill meet; hence, each doctor operates
as a single-server system. Each doctorworks in a subset of available
days and shifts. There are three shifts:morning (am) shifts, roughly
from 8:30 am to 12:30 pm, afternoon (pm) shifts, roughly from
12:30 pm to 4:30 pm, and full-day shifts. During the weekdays of
the 13-week study period, the 16 doctors worked for a total of 228
am shifts, 220 pm shifts, 25 full-day shifts. The shifts are not evenly
distributed among the doctors; the numbers ranged from 11 to 46.

In this paper, we primarily focus on patient arrivals to one doc-
tor, called doctor 9 in our longer more detailed study [11]; doctor
9 was selected because of the relatively high volume and even dis-
tribution between the am and the pm shifts. Analysis of all doctors
is in [11]. During our study period, doctor 9 worked for a total of
22 am shifts (12 on Tuesdays and 10 on Fridays) and 22 pm shifts
(11 on Mondays, 2 on Wednesdays, and 9 on Thursdays).

We first consider the number of daily scheduled and actual ar-
rivals. Patients make appointments for a specific time slot (avail-
able in 10 min intervals and each slot can have multiple patients).
The schedule fills up over time (cancellations are allowed), and we
see in the data that patients book appointments as early as a year
before the appointment date. In this paper, we do not consider the
booking date and examine only whether each patient has an ap-
pointment at the end of the previous day. We then differentiate
between the number of scheduled (scheduled by the night before)
patients (NS) and the number of unscheduled (scheduled and ar-
rived on the same day) patients (NU ). The number of patients who
showupon their appointment date (NA) is always less than or equal
to the sum of NS and NU .

Fig. 2 depicts the values of NS , NU , and NA during the 13-week
study period. The average (standard deviation) values of NS , NU ,
and NA are 66.1 (4.6), 2.2 (1.7), and 62.6 (4.2), respectively, in
am shifts and 58.8 (6.0), 2.1 (1.7), and 55.7 (7.0), respectively, in
pm shifts. Note that NU is so small relative to NS and NA that NU

necessarily has a small impact on NA. Also, note that NS and NA
have low variability; we discuss and statistically test their under-
dispersion in Section 4. On average, NA is 95% of NS in both the am
and pm shifts; in particular, NA ranges from 88% to 102% of NS in
am shifts and from 86% to 110% in pm shifts, and rarely exceedsNS .

3. Arrivals within each shift

We now examine the arrival data within each shift (am or pm)
on a single day. We start by estimating the cumulative arrival rate
and instantaneous arrival rate functions for both the scheduled and
actual arrivals. We then analyze no-shows and the lateness (or
earliness), which explain why the actual arrival process is more
variable than the scheduled arrival process. Afterwards, we test
whether the arrival data within shifts are consistent with an NHPP
or even a PP.

3.1. Estimated arrival rate functions

Patients are scheduled to arrive in 10-min intervals over each
shift. Since about 66 patients arrive in each shift, each slot has on
average 2.6 patients scheduled. Let S(t) (A(t)) be the numbers of
patients within a shift scheduled to arrive (that actually arrive) by
time t , starting from the beginning of the day. Fig. 3 shows (at the
left) the 22 observed functions S(t) and A(t) for the am shifts (top)
and pm shifts (bottom). Moving to the right, Fig. 3 then shows that
averages S̄(t) and Ā(t) and the associated histogram over 30-min
subintervals.

We draw two conclusions from Fig. 3. First, on average the pa-
tients tend to arrive early, i.e., Ā(t) > S̄(t) except at the end of the
shift. Second, from the plots, we can see that there is much more
variability in the actual arrivals than in the scheduled arrivals. In
particular, the plots of S(t) are step functions, whereas the plots of
A(t) are not.

3.2. No-shows and lateness

Let Nno be the number of the NS scheduled arrivals that do not
actually arrive,whichwe call no-shows. Note thatwehave the sim-
ple conservation equation NA = NS −Nno +NU . Let X be the differ-
ence between an actual arrival time from its scheduled arrival time.
We think of observed values of Nno/NS and X as estimates of a no-
show probability and a random deviation X , with associated late-
ness cumulative distribution function (cdf) F , both of which might
depend on the scheduled arrival time. We examine deviations in
more detail by looking at the proportion of arrivals that are late
(P(X > 0)) and the average of the earliness among those that arrive
early (X−) and of the lateness among those that arrive late (X+), as
well as the overall average lateness or deviation (X). Table 1 shows
the details for the scheduled patients in each hour of the am and
pm shifts. A similar analysis of the other 15 doctors appears in [11].

Table 1 supports the following conclusions: (i) the proportion
of no-shows is consistently about 8%, with the hourly values falling
between 6% and 8% except for a rise at the ends of the day, (ii) the
proportion of lateness is about 14% in the amand11% in the pm, but
otherwise roughly stable over time, (iii) the average lateness (X+)
is quite steady at just under 20min, except for an increase to 30min
at the beginning of the day, (iv) the average earliness increases at
the beginning of the day, soon approaching a steady-state value of
about 60min. The low initial earliness is evidently due a fixed start
time. Our data are consistentwith previous empirical evidence that
patients arrive early more often than late [14,15].

Fig. 4 shows the lateness empirical cdf’s (ecdf’s) that are esti-
mates of the lateness cdf F for each hour of the day. Consistent
with the order of the averages seen in Table 1, Fig. 4 shows that
the ecdf’s are stochastically ordered (Section 9.1 of [19]), with the
least earliness (lowest ecdf) in the first hour.
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