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a b s t r a c t

The standard formulation of the fractionation problem with multiple organs-at-risk based on the
linear–quadratic dose–response model requires the solution of a nonconvex quadratically constrained
quadratic program. Existing literature therefore uses heuristic methods without any analyses about
solution quality. There is no known method that is guaranteed to find an optimal solution. We prove
that this formulation of the fractionation problem can in fact be solved to optimality by instead solving a
two-variable linear program with a few constraints.

© 2015 Elsevier B.V. All rights reserved.

1. Background and motivation

The goal in cancer radiotherapy is to maximize damage to the
tumorwhile limiting toxic effects of radiation on nearby organs-at-
risk (OAR). The fractionation problem attempts to achieve this goal
by finding a damage-maximizing sequence d⃗ = (d1, d2, . . . , dN) of
radiation doses given to the tumor in N treatment sessions while
ensuring that the corresponding doses given to the nearby OAR are
safely tolerable. This problemhas been studied extensively for over
a century [13].

A majority of mathematical research on the fractionation
problem has considered a single OAR, and in this stylized case, an
optimal solution is known in closed-form (see, for example, [3–5,7,
12,15] and references therein). However, as essentially all tumors
are surrounded by multiple OAR, the focus has recently shifted to
this more realistic and difficult case where the problem has the
following form (see [2,14,16,18], for instance).

(OPTFRAC) max
d⃗

α0

N
t=1

dt + β0

N
t=1

d2t , (1)

subject to sm
N

t=1

dt + ρms2m
N

t=1

(dt)2 ≤ BEDm, m ∈ M, (2)

d⃗ ≥ 0. (3)
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This formulation is based on the linear–quadratic (LQ) frame-
work, which is currently the most widely used model of
dose–response [6]. Here, α0 and β0 are the LQ dose–response pa-
rameters for the tumor. The objective function equals the biological
effect of d⃗ on the tumor and it is a standard quantitative measure
of tumor-damage [6]. The set M , {1, 2, . . . ,M} is the set of OAR
under consideration. For OAR m ∈ M, ρm = βm/αm is the ratio of
its LQ dose–response parameters αm and βm. Parameter sm is the
so-called effective sparing factor for OAR m and it equals the pro-
portion of tumor dose that is delivered to this OAR. The left hand
side of the inequality constraint (2) for OAR m ∈ M is then the
formula for the biologically effective dose (BED) delivered to OAR
m according to the LQ model [6]. The dose-tolerance parameters
BEDm are BED values that the various OAR are known to tolerate.
These can be derived from standard treatment guidelines available
in [11]. In summary, formulation (OPTFRAC) follows the standard
approach of maximizing the biological effect on tumor subject to
upper bound constraints on OAR BED.

The above formulation is general enough to include serial and
parallel OAR with maximum dose, mean dose, and dose–volume
type constraints. Formulas for effective sparing factors for OAR
with maximum dose, mean dose, and dose–volume type con-
straints are available, for example, in [3,8,14,15]. In this paper, we
do not consider the trivial case of N = 1, where (OPTFRAC) can be
readily solved in closed-form. Typical values of N , and hence the
number of variables in (OPTFRACT), are in the range 25–45 corre-
sponding to a 5–9 week treatment course.

Formulation (1)–(3) is a nonconvex quadratically constrained
quadratic program (QCQP)—although the constraints are convex
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in d⃗, the objective is to maximize a convex function (this latter be-
ing the source of nonconvexity). Such problems are typically com-
putationally difficult to solve, and in general belong to the class
NP-hard [10]. A recurrent theme in the fractionation literature
therefore is to use heuristic methods or to obtain optimal solu-
tions for certain special cases. For example, simulated annealing
is used in [18] for the case of two OAR; a local search heuristic is
contemplated but not implemented in [16]; Karush–Kuhn–Tucker
(KKT) conditions are employed to characterize somewhat compli-
cated optimal solutions for the case of two OAR in [2]; and an exact
solution is derived in [14] using either a tedious algebraic proof or
a tedious KKT approach when problem parameters are ordered a
certain way. There is no known method that is guaranteed to find
an optimal solution in general. As such, problem (OPTFRAC) has
thus remained unsolved.

2. Results

We show in Theorem 1 the perhaps surprising result that an
optimal solution to (OPTFRAC) can in fact be derived in closed-
form from the solution of a two-variable linear program (LP) with
nonnegative variables andM constraints. We emphasize here that
since the number of constraints M is equal to the number of OAR,
this number is small. For example,we could have four OAR in head-
and-neck cancer—spinal cord, brain stem, and left/right parotids.
Similarly, in prostate cancer, we could have four OAR—left/right
femurs, bladder, and rectum. From our experience in radiotherapy,
it seems unlikely that M would be more than ten or twenty. In
short, our two-variable LP is easily solvable.

We first introduce additional notation. We define, as in the
existing literature, the dose

bm(N) ,
−1 +

√
1 + 4ρmBEDm/N
2smρm

, m ∈ M. (4)

This is the largest possible dose that can be given in an equal-
dosage schedule (that is, a schedule where d1 = d2 = · · · = dN )
without violating inequality constraint (2) for OAR m ∈ M. This
dose is derived by solving the quadratic equation obtained by using
d1 = d2 = · · · = dN and then setting the left hand side in (2) equal
to the right hand side for OARm ∈ M. We use bm(1) to denote the
dose obtained by substituting N = 1 into formula (4); in other
words, bm(1) is the largest possible dose that can be given in a
single-dosage schedule (that is, a schedule where all doses except
one are zero) without violating inequality constraint (2) for OAR
m ∈ M. Moreover, we define

γ ∗
= min

m∈M
bm(1), and c∗

= min
m∈M

bm(N).

Here, γ ∗ is the largest possible (hence optimal) dose in a single-
dosage solution, whereas c∗ is the largest possible (hence optimal)
dose per session in an equal-dosage solution. Note here that these
optimal doses are obtained by finding the minimum over all OAR
because an OAR that attains theminimum is a ‘‘dose-limiting’’ OAR
and any higher dose will be infeasible.

We show below that an optimal solution to OPTFRAC can
be derived in closed-form from an optimal solution of the two-
variable LP

(2VARLP) max
x,y

α0x + β0y,

subject to smx + s2mρmy ≤ BEDm, m ∈ M,

y ≤ γ ∗x, (5)

c∗x ≤ y, (6)
x ≥ 0, y ≥ 0.

(2VARLP) does indeed have an optimal solution because its feasible
region is bounded. In the sequel, we use the phrase ‘‘unequal

multiple-dosage’’ to mean any dosing schedule that is neither
single-dosage nor equal-dosage. We then have,

Theorem 1. Let x∗, y∗ be an optimal solution to (2VARLP). Then
exactly one of the following three situations must hold.

1. x∗
=

√
y∗: it is optimal to set dt = γ ∗ in exactly one session t

and set the other N − 1 doses ds, for s ≠ t, to zero; that is, a
single-dosage solution is optimal.

2. x∗
=

√
Ny∗: it is optimal to set dt = c∗, for t = 1, 2, . . . ,N; that

is, an equal-dosage solution is optimal.
3.

√
y∗ < x∗ <

√
Ny∗: we have an uncountable number of unequal

multiple-dosage optimal solutions that satisfy
N

t=1 dt = x∗,N
t=1 d

2
t = y∗, dt ≥ 0 for t = 1, 2, . . . ,N; for example, the

two-dose solution where d3 = d4 = · · · = dN = 0, and

d1 =
x∗

+

2y∗ − (x∗)2

2
, d2 = x∗

− d1,

is optimal.

Moreover, the above three conditions are necessary. That is,

1. Suppose a single-dosage solution is optimal. Then there exists a pair
(x∗, y∗) that is optimal to (2VARLP) such that x∗

=
√
y∗.

2. Suppose an equal-dosage solution is optimal. Then there exists a
pair (x∗, y∗) that is optimal to (2VARLP) such that x∗

=
√
Ny∗.

3. Suppose an unequal multiple-dosage solution is optimal. Then
there exists a pair (x∗, y∗) that is optimal to (2VARLP) such that
√
y∗ < x∗ <

√
Ny∗.

Proof. We use the transformations x =
N

t=1 dt and y =
N

t=1 d
2
t

to reformulate (OPTFRAC) as

max
d⃗,x,y

α0x + β0y,

subject to smx + s2mρmy ≤ BEDm, m ∈ M,

x =

N
t=1

dt , y =

N
t=1

d2t , d⃗ ≥ 0, (7)

x ≥ 0, y ≥ 0.

Since d⃗ ≥ 0, x and
√
y can be seen as the l1 and l2 norms of

d⃗, respectively. Consequently, every x, y, d⃗ combination that is
feasible to constraints (7) also satisfies the two inequalities

√
y ≤

x ≤
√
Ny (this is a well-known relationship between l1 and l2

norms). Thus, we first add these two inequalities to the above
problem without altering its feasible region. This yields,

max
d⃗,x,y

α0x + β0y, (8)

subject to smx + s2mρmy ≤ BEDm, m ∈ M, (9)

x =

N
t=1

dt , y =

N
t=1

d2t , d⃗ ≥ 0, (10)

√
y ≤ x ≤


Ny, (11)

x ≥ 0, y ≥ 0. (12)

We now claim that an optimal sequence of doses for (8)–(12) can
be recovered from any optimal solution of

max
x,y

α0x + β0y, (13)

subject to smx + s2mρmy ≤ BEDm, m ∈ M (14)
√
y ≤ x ≤


Ny, (15)

x ≥ 0, y ≥ 0. (16)
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