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1. Introduction and preliminaries

In the last two decades, robust optimization has been through a
rapid development owing to the practical requirement and its ef-
fective implementation in real-world applications of optimization
[2,3,8]. Recently much attention has been paid to introducing ro-
bustness in multi-objective optimization under uncertainty. For a
multi-objective optimization problem with the objective function
involving an uncertain parameter, several concepts of robustness
were developed without scalarization, such as the component-
wise worst case robustness in [17,7], min-max robustness in [5],
convex version of min-max robustness in [4] and other ones based
on set order relations in [12,13,11]. In this study, we consider the
following vector optimization problem

l\x/'g%] Ju) = f(x,u) (L1)

where u is an uncertain parameter varying in a bounded closed set
U cCRNandf, : D C R" — R™is a vector-valued function.

Let X, Y and Z be three topological linear spaces and K be a
proper, pointed and convex cone in Y. Then Y is partially ordered
by <k, ie.

Y1<kY2 & Y2 —y1 €K.
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An associated order < g is defined by
Y1 <k\joy Y2 € y2 —y1 € K\ {0}.

Meanwhile, set order relations in the power space 2¥ can be
constructed on the basis of Q (= K or K \ {0}). For two sets B and
CinY, we write that

B<,C ifCCB+Q
and
B<yC ifBCC—Q.

Following Jahn and Ha [15], we call <il the I-type less order

relation, <“Q the u-type less order relation.
ForasetA C Y, recall that

(i) ais a minimal element of Aifa € A and thereisnoa € A\ {a}
such thata <y a;
(ii) ais a maximal element of Aifa € Aand thereisnoa € A\ {a}
such that a <k a;
(iii) ais a lower bound of Aif a <y aforalla € A;
(iv) ais an upper bound of Aif a <y a for all a € A;
(v) ais an infimum of A if @ is a lower bound and a < a for every
lower bound @;
(vi) aisasupremum ofAifaisanupperboundand a <y aforevery
upper bound a.

The minimal set, maximal set, infimum and supremum of A are
denoted by Min A, Max A, infA and sup A, respectively. It is worth
noting that for a set in a partially ordered space the infimum is
unique if it exists, so is the supremum [18].

Suppose that f : D x U — Y is a vector-valued function with
D C Xand U C Z.For problem (1.1) with u € U fixed,
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(1) X € D is an efficient solution if there is no x € D such that
fu®) =0y fu®);

(2) x € D is a strictly efficient solution if there isnox € D \ {x}
such that f, (x) <g fu(X).

It is well known that

(3) xis an efficient solution if and only if f,(x) € Min f,(D);
(4) x is a strictly efficient solution if and only if f, (x) € Min f,(D)
and fu(X) & fu(D\ {x}),

where f, (D) = {f,(x) : x € D}. Additionally, throughout this paper
we denote F(x) = {f(x,u) : u € U} and assume that Max F(x) is
nonempty and sup F (x) exists for every x € D.

2. Robust counterparts and robust efficient solutions

In scalar optimization, the original robustness in the hard sense
means immunity against all scenarios. This leads to the worst case
model, which is a min-max or max-min problem, in the case of the
scalar optimization problem under objective-wise uncertainty. For
problem (1.1) with Y = R the real space and K = R, the routine
cone, its robust counterpart is
min maxf(x, u) (2.1)

xeD ueU
under the assumption that there exists au € U such that f (x, u) =
sup,cy f (%, u). This model can be derived in two steps: (i) write
problem (1.1) as

min t

Xt

st. f(x,u) <t
x €D,

(ii) robustify the problem above with respect to u as

min ¢

x,t

st. f(x,u) <t, YuelU
xeD,

that is,

min t

Xt

st.  supf(x,u) <t
uel
xeD,

which is problem (2.1).

We follow the same line to deduce a robust counterpart for
problem (1.1) in the vector optimization setting. We begin with
a lemma about transforming the vector-valued objective function
into a vector inequality constraint.

Lemma 2.1. Let X and Y be two topological linear spaces with Y
partially ordered by <. Suppose g : X — Y. Then for the following
two problems

Min g(x) (2:2)
xeX

and

Min ¢t

Xt

st gx) <t (2.3)

x e X,
we have

(a) x is an efficient solution to problem (2.2) if and only if (%, t) is an
efficient solution to problem (2.3) for some t;

(b) X is a strictly efficient solution to problem (2.2) if and only if (X, t)
is a strictly efficient solution to problem (2.3) for some t.

Proof. (a) The cone K is pointed and convex, then

Ming(X) = Min (g(X) + K)
= Min{t : g(x) < t,x € X}. (2.4)

The necessity is verified immediately by the equalities (2.4) with
t = g(%). The proof of the sufficiency begins with showing t = g(X)
whenever (X, t) is an efficient solution to problem (2.3). In fact,
if t # g(x), then g(X) <g\(o t, which contradicts ¢ € Min{t :
g(x) <xt,x € X}. Then the equalities (2.4) leads to g(x) €
Min g(X), that is, X is an efficient solution to problem (2.2).

(b) Suppose that x is a strictly efficient solution to problem (2.2).
Let t = g(X). Then there is no (x,t) # (X, t) with x # X and
g(x) < t such that t <i t. Otherwise, the transitivity of <y results
in that there is another x € X such that g(x) <y g(x), which contra-
dicts the strict efficiency of x. On the other hand, for every feasible
point (X, t) # (X, t) with t £ t, it is impossible that t <j t since
g(X) <y t.Inall, there is no (x, t) # (X, t) with g(x) < t such that
t <y t, thatis, (x, t) is a strictly efficient solution to problem (2.3).

The reverse can be discussed analogously with a slight differ-
ence. We need to prove t = g(x) first whenever (X, ) is a strictly
efficient solution to problem (2.3). In fact, if not, there exists a point
(X,2()) # (%, t) such that g(X) <y t. Next, consider every x ## X.
Then g (x) <g t cannot hold since (x, g(x)) # (X, t). This means that
there isnox € X \ {x} such that g(x) < g(x), that is, X is a strictly
efficient solution to problem (2.2). O

Remark 2.1. Note that Min g(X) may not equal Min (g(X) + K) if
K is not pointed, while Ming(X) C Min (g(X) + K) holds always
provided that K is a convex cone [14]. For the case where K lacks
pointedness, problem (2.2) may not be equivalent to problem (2.3)
but can be deemed a safe approximation of problem (2.3).

Now set g(-) := f,(-), then for problem (1.1) we get

Min ¢t

Xt

st. f(x,u) <yt
x eD.

After introducing robustness with respect to u, we have

Mitn t

X,

st. f(x,u)<gt, YueU (2.5)
x €D,

which is

Min ¢

X, t

st. supF(x) <t (2.6)
x e D.

Since sup F(-) is single-valued, then by Lemma 2.1 again the last
problem is equivalent to

Min sup F(x). (2.7)
xeD

Definition 2.1. Problem (2.7) is called the robust counterpart in
the hard sense or H-robust counterpart of problem (1.1). Every
efficient solution to problem (2.7) is called the H-robust efficient
solution to problem (1.1); every strictly efficient solution to
problem (2.7) is called the H-robust strictly efficient solution to
problem (1.1).

Remark 2.2. It is obvious that robust counterpart (2.7) reduces
to robust counterpart (2.1) when problem (1.1) is a scalar
optimization problem in that sup F (x) = max,cy f (X, u).
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