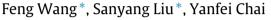
Operations Research Letters 43 (2015) 293-298

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Robust counterparts and robust efficient solutions in vector optimization under uncertainty



School of Mathematics and Statistics, Xidian University, Xi'an 710071, China

ARTICLE INFO

Article history: Received 31 October 2014 Received in revised form 16 March 2015 Accepted 18 March 2015 Available online 25 March 2015

Keywords: Robust optimization Vector optimization under uncertainty Efficient solution Set order relation

ABSTRACT

Two robust counterparts and associated concepts of robust efficient solution are established for a vector optimization problem under uncertainty. First, we propose a robust counterpart in the classical sense by following the line for scalar optimization problems under uncertainty. Then, from a relaxed model we derive another robust counterpart, which is a bilevel optimization problem involving a set-valued optimization problem at the upper level and a vector optimization problem at the lower level.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

In the last two decades, robust optimization has been through a rapid development owing to the practical requirement and its effective implementation in real-world applications of optimization [2,3,8]. Recently much attention has been paid to introducing robustness in multi-objective optimization under uncertainty. For a multi-objective optimization problem with the objective function involving an uncertain parameter, several concepts of robustness were developed without scalarization, such as the component-wise worst case robustness in [17,7], min-max robustness in [5], convex version of min-max robustness in [4] and other ones based on set order relations in [12,13,11]. In this study, we consider the following vector optimization problem

$$\underset{x \in D}{\operatorname{Min}} f_{u}(x) := f(x, u)$$
(1.1)

where *u* is an uncertain parameter varying in a bounded closed set $U \subset R^N$ and $f_u : D \subset R^n \to R^m$ is a vector-valued function.

Let *X*, *Y* and *Z* be three topological linear spaces and *K* be a proper, pointed and convex cone in *Y*. Then *Y* is partially ordered by \leq_{K} , i.e.

 $y_1 \leq_K y_2 \Leftrightarrow y_2 - y_1 \in K.$

An associated order $\leq_{K \setminus \{0\}}$ is defined by

 $y_1 \leq_{K \setminus \{0\}} y_2 \Leftrightarrow y_2 - y_1 \in K \setminus \{0\}.$

Meanwhile, set order relations in the power space 2^{Y} can be constructed on the basis of Q (= K or $K \setminus \{0\}$). For two sets B and C in Y, we write that

$$B \preccurlyeq^l_Q C \quad \text{if } C \subset B + Q$$

and

$$B \preccurlyeq^u_O C \quad \text{if } B \subset C - Q.$$

Following Jahn and Ha [15], we call \preccurlyeq_Q^l the *l*-type less order relation, \preccurlyeq_Q^u the *u*-type less order relation. For a set $A \subset Y$, recall that

- (i) \bar{a} is a minimal element of *A* if $\bar{a} \in A$ and there is no $a \in A \setminus \{\bar{a}\}$ such that $a \leq_K \bar{a}$;
- (ii) ā is a maximal element of A if ā ∈ A and there is no a ∈ A \ {ā} such that ā ≤_K a;
- (iii) \tilde{a} is a lower bound of A if $\tilde{a} \leq_K a$ for all $a \in A$;
- (iv) \tilde{a} is an upper bound of *A* if $a \leq_K \tilde{a}$ for all $a \in A$;
- (v) \hat{a} is an infimum of *A* if \hat{a} is a lower bound and $\tilde{a} \leq_K \hat{a}$ for every lower bound \tilde{a} ;
- (vi) \hat{a} is a supremum of *A* if \hat{a} is an upper bound and $\hat{a} \leq_{\kappa} \tilde{a}$ for every upper bound \tilde{a} .

The minimal set, maximal set, infimum and supremum of A are denoted by Min A, Max A, inf A and sup A, respectively. It is worth noting that for a set in a partially ordered space the infimum is unique if it exists, so is the supremum [18].

Suppose that $f : D \times U \rightarrow Y$ is a vector-valued function with $D \subset X$ and $U \subset Z$. For problem (1.1) with $u \in U$ fixed,

Operations Research Letters

^{*} Corresponding authors. Tel.: +86 02988201214.

E-mail addresses: liusanyang@126.com (F. Wang), liusanyang@126.com (S. Liu), chai_0923@163.com (Y. Chai).

- (1) $\bar{x} \in D$ is an efficient solution if there is no $x \in D$ such that $f_u(x) \leq_{K \setminus \{0\}} f_u(\bar{x});$
- (2) $\bar{x} \in D$ is a strictly efficient solution if there is no $x \in D \setminus {\bar{x}}$ such that $f_u(x) \leq_K f_u(\bar{x})$.
- It is well known that
- (3) \bar{x} is an efficient solution if and only if $f_{\mu}(\bar{x}) \in \text{Min } f_{\mu}(D)$;
- (4) \bar{x} is a strictly efficient solution if and only if $f_u(\bar{x}) \in \operatorname{Min} f_u(D)$ and $f_u(\bar{x}) \notin f_u(D \setminus \{\bar{x}\})$,

where $f_u(D) := \{f_u(x) : x \in D\}$. Additionally, throughout this paper we denote $F(x) = \{f(x, u) : u \in U\}$ and assume that Max F(x) is nonempty and $\sup F(x)$ exists for every $x \in D$.

2. Robust counterparts and robust efficient solutions

In scalar optimization, the original robustness in the hard sense means immunity against all scenarios. This leads to the worst case model, which is a min–max or max–min problem, in the case of the scalar optimization problem under objective-wise uncertainty. For problem (1.1) with Y = R the real space and $K = R_+$ the routine cone, its robust counterpart is

$$\min_{x \in D} \max_{u \in U} f(x, u) \tag{2.1}$$

under the assumption that there exists a $\bar{u} \in U$ such that $f(x, \bar{u}) = \sup_{u \in U} f(x, u)$. This model can be derived in two steps: (i) write problem (1.1) as

$$\min_{\substack{x,t \\ s.t. \\ x \in D.}} t$$

(ii) robustify the problem above with respect to *u* as

 $\min_{\substack{x,t \\ \text{s.t.}}} \quad t \\ \text{s.t.} \quad f(x,u) \le t, \quad \forall u \in U \\ \quad x \in D,$

that is,

min t

s.t.
$$\sup_{u \in U} f(x, u) \le t$$

 $x \in D,$

which is problem (2.1).

We follow the same line to deduce a robust counterpart for problem (1.1) in the vector optimization setting. We begin with a lemma about transforming the vector-valued objective function into a vector inequality constraint.

Lemma 2.1. Let X and Y be two topological linear spaces with Y partially ordered by \leq_K . Suppose $g : X \to Y$. Then for the following two problems

$$\min_{x \in X} g(x) \tag{2.2}$$

Min t

s.t.
$$g(x) \leq_K t$$
 (2.3)
 $x \in X$.

we have

- (a) \bar{x} is an efficient solution to problem (2.2) if and only if (\bar{x}, \bar{t}) is an efficient solution to problem (2.3) for some \bar{t} ;
- (b) \bar{x} is a strictly efficient solution to problem (2.2) if and only if (\bar{x}, \bar{t}) is a strictly efficient solution to problem (2.3) for some \bar{t} .

Proof. (a) The cone *K* is pointed and convex, then

$$\operatorname{Min} g(X) = \operatorname{Min} (g(X) + K)$$

= Min{t : g(x) \le K t, x \in X}. (2.4)

The necessity is verified immediately by the equalities (2.4) with $\bar{t} = g(\bar{x})$. The proof of the sufficiency begins with showing $\bar{t} = g(\bar{x})$ whenever (\bar{x}, \bar{t}) is an efficient solution to problem (2.3). In fact, if $\bar{t} \neq g(\bar{x})$, then $g(\bar{x}) \leq_{K \setminus \{0\}} \bar{t}$, which contradicts $\bar{t} \in \text{Min}\{t : g(x) \leq_K t, x \in X\}$. Then the equalities (2.4) leads to $g(\bar{x}) \in \text{Min}g(X)$, that is, \bar{x} is an efficient solution to problem (2.2).

(b) Suppose that \bar{x} is a strictly efficient solution to problem (2.2). Let $\bar{t} = g(\bar{x})$. Then there is no $(x, t) \neq (\bar{x}, \bar{t})$ with $x \neq \bar{x}$ and $g(x) \leq_K t$ such that $t \leq_K \bar{t}$. Otherwise, the transitivity of \leq_K results in that there is another $x \in X$ such that $g(x) \leq_K g(\bar{x})$, which contradicts the strict efficiency of \bar{x} . On the other hand, for every feasible point $(\bar{x}, t) \neq (\bar{x}, \bar{t})$ with $t \neq \bar{t}$, it is impossible that $t \leq_K \bar{t}$ since $g(\bar{x}) \leq_K t$. In all, there is no $(x, t) \neq (\bar{x}, \bar{t})$ with $g(x) \leq_K t$ such that $t \leq_K \bar{t}$, that is, (\bar{x}, \bar{t}) is a strictly efficient solution to problem (2.3).

The reverse can be discussed analogously with a slight difference. We need to prove $\overline{t} = g(\overline{x})$ first whenever $(\overline{x}, \overline{t})$ is a strictly efficient solution to problem (2.3). In fact, if not, there exists a point $(\overline{x}, g(\overline{x})) \neq (\overline{x}, \overline{t})$ such that $g(\overline{x}) \leq_K \overline{t}$. Next, consider every $x \neq \overline{x}$. Then $g(x) \leq_K \overline{t}$ cannot hold since $(x, g(x)) \neq (\overline{x}, \overline{t})$. This means that there is no $x \in X \setminus {\overline{x}}$ such that $g(x) \leq_K g(\overline{x})$, that is, \overline{x} is a strictly efficient solution to problem (2.2). \Box

Remark 2.1. Note that $\operatorname{Min} g(X)$ may not equal $\operatorname{Min} (g(X) + K)$ if K is not pointed, while $\operatorname{Min} g(X) \subset \operatorname{Min} (g(X) + K)$ holds always provided that K is a convex cone [14]. For the case where K lacks pointedness, problem (2.2) may not be equivalent to problem (2.3) but can be deemed a safe approximation of problem (2.3).

Now set $g(\cdot) := f_u(\cdot)$, then for problem (1.1) we get

 $\begin{array}{ll} \underset{x,t}{\text{Min}} & t \\ \text{s.t.} & f(x,u) \leq_{K} t \\ & x \in D. \end{array}$

After introducing robustness with respect to *u*, we have

$$\begin{array}{ll} \underset{x,t}{\underset{x,t}{\text{Min}}} & t \\ \text{s.t.} & f(x,u) \leq_{K} t, \quad \forall u \in U \\ & x \in D. \end{array}$$

$$(2.5)$$

which is

s.t.
$$\sup_{x \in D} F(x) \leq_{K} t$$
 (2.6)

Since $\sup F(\cdot)$ is single-valued, then by Lemma 2.1 again the last problem is equivalent to

$$\underset{x \in D}{\operatorname{Min}} \sup F(x).$$
(2.7)

Definition 2.1. Problem (2.7) is called the robust counterpart in the hard sense or H-robust counterpart of problem (1.1). Every efficient solution to problem (2.7) is called the H-robust efficient solution to problem (1.1); every strictly efficient solution to problem (2.7) is called the H-robust strictly efficient solution to problem (1.1).

Remark 2.2. It is obvious that robust counterpart (2.7) reduces to robust counterpart (2.1) when problem (1.1) is a scalar optimization problem in that sup $F(x) = \max_{u \in U} f(x, u)$.

Download English Version:

https://daneshyari.com/en/article/1142090

Download Persian Version:

https://daneshyari.com/article/1142090

Daneshyari.com