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a b s t r a c t

Two robust counterparts and associated concepts of robust efficient solution are established for a vector
optimization problem under uncertainty. First, we propose a robust counterpart in the classical sense
by following the line for scalar optimization problems under uncertainty. Then, from a relaxed model
we derive another robust counterpart, which is a bilevel optimization problem involving a set-valued
optimization problem at the upper level and a vector optimization problem at the lower level.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

In the last two decades, robust optimization has been through a
rapid development owing to the practical requirement and its ef-
fective implementation in real-world applications of optimization
[2,3,8]. Recently much attention has been paid to introducing ro-
bustness in multi-objective optimization under uncertainty. For a
multi-objective optimization problem with the objective function
involving an uncertain parameter, several concepts of robustness
were developed without scalarization, such as the component-
wise worst case robustness in [17,7], min–max robustness in [5],
convex version of min–max robustness in [4] and other ones based
on set order relations in [12,13,11]. In this study, we consider the
following vector optimization problem

Min
x∈D

fu(x) := f (x, u) (1.1)

where u is an uncertain parameter varying in a bounded closed set
U ⊂ RN and fu : D ⊂ Rn

→ Rm is a vector-valued function.
Let X , Y and Z be three topological linear spaces and K be a

proper, pointed and convex cone in Y . Then Y is partially ordered
by ≤K , i.e.

y1 ≤K y2 ⇔ y2 − y1 ∈ K .
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An associated order ≤K\{0} is defined by
y1 ≤K\{0} y2 ⇔ y2 − y1 ∈ K \ {0}.

Meanwhile, set order relations in the power space 2Y can be
constructed on the basis of Q (= K or K \ {0}). For two sets B and
C in Y , we write that
B4l

Q C if C ⊂ B + Q
and
B4u

Q C if B ⊂ C − Q .

Following Jahn and Ha [15], we call 4l
Q the l-type less order

relation, 4u
Q the u-type less order relation.

For a set A ⊂ Y , recall that
(i) ā is a minimal element of A if ā ∈ A and there is no a ∈ A \ {ā}

such that a≤K ā;
(ii) ā is a maximal element of A if ā ∈ A and there is no a ∈ A \ {ā}

such that ā≤K a;
(iii) ã is a lower bound of A if ã≤K a for all a ∈ A;
(iv) ã is an upper bound of A if a≤K ã for all a ∈ A;
(v) â is an infimum of A if â is a lower bound and ã≤K â for every

lower bound ã;
(vi) â is a supremumofA if â is an upper bound and â≤K ã for every

upper bound ã.

The minimal set, maximal set, infimum and supremum of A are
denoted by Min A, Max A, inf A and sup A, respectively. It is worth
noting that for a set in a partially ordered space the infimum is
unique if it exists, so is the supremum [18].

Suppose that f : D × U → Y is a vector-valued function with
D ⊂ X and U ⊂ Z . For problem (1.1) with u ∈ U fixed,
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(1) x̄ ∈ D is an efficient solution if there is no x ∈ D such that
fu(x) ≤K\{0} fu(x̄);

(2) x̄ ∈ D is a strictly efficient solution if there is no x ∈ D \ {x̄}
such that fu(x) ≤K fu(x̄).

It is well known that

(3) x̄ is an efficient solution if and only if fu(x̄) ∈ Min fu(D);
(4) x̄ is a strictly efficient solution if and only if fu(x̄) ∈ Min fu(D)

and fu(x̄) ∉ fu(D \ {x̄}),

where fu(D) := {fu(x) : x ∈ D}. Additionally, throughout this paper
we denote F(x) = {f (x, u) : u ∈ U} and assume that Max F(x) is
nonempty and sup F(x) exists for every x ∈ D.

2. Robust counterparts and robust efficient solutions

In scalar optimization, the original robustness in the hard sense
means immunity against all scenarios. This leads to the worst case
model, which is amin–max ormax–min problem, in the case of the
scalar optimization problem under objective-wise uncertainty. For
problem (1.1) with Y = R the real space and K = R+ the routine
cone, its robust counterpart is

min
x∈D

max
u∈U

f (x, u) (2.1)

under the assumption that there exists a ū ∈ U such that f (x, ū) =

supu∈U f (x, u). This model can be derived in two steps: (i) write
problem (1.1) as

min
x,t

t

s.t. f (x, u) ≤ t
x ∈ D,

(ii) robustify the problem above with respect to u as

min
x,t

t

s.t. f (x, u) ≤ t, ∀u ∈ U
x ∈ D,

that is,

min
x,t

t

s.t. sup
u∈U

f (x, u) ≤ t

x ∈ D,

which is problem (2.1).
We follow the same line to deduce a robust counterpart for

problem (1.1) in the vector optimization setting. We begin with
a lemma about transforming the vector-valued objective function
into a vector inequality constraint.

Lemma 2.1. Let X and Y be two topological linear spaces with Y
partially ordered by ≤K . Suppose g : X → Y . Then for the following
two problems

Min
x∈X

g(x) (2.2)

and

Min
x,t

t

s.t. g(x) ≤K t
x ∈ X,

(2.3)

we have

(a) x̄ is an efficient solution to problem (2.2) if and only if (x̄, t̄) is an
efficient solution to problem (2.3) for some t̄;

(b) x̄ is a strictly efficient solution to problem (2.2) if and only if (x̄, t̄)
is a strictly efficient solution to problem (2.3) for some t̄.

Proof. (a) The cone K is pointed and convex, then

Min g(X) = Min (g(X) + K)

= Min{t : g(x) ≤K t, x ∈ X}. (2.4)

The necessity is verified immediately by the equalities (2.4) with
t̄ = g(x̄). The proof of the sufficiency beginswith showing t̄ = g(x̄)
whenever (x̄, t̄) is an efficient solution to problem (2.3). In fact,
if t̄ ≠ g(x̄), then g(x̄) ≤K\{0} t̄ , which contradicts t̄ ∈ Min{t :

g(x) ≤K t, x ∈ X}. Then the equalities (2.4) leads to g(x̄) ∈

Min g(X), that is, x̄ is an efficient solution to problem (2.2).
(b) Suppose that x̄ is a strictly efficient solution to problem (2.2).

Let t̄ = g(x̄). Then there is no (x, t) ≠ (x̄, t̄) with x ≠ x̄ and
g(x) ≤K t such that t ≤K t̄ . Otherwise, the transitivity of ≤K results
in that there is another x ∈ X such that g(x) ≤K g(x̄), which contra-
dicts the strict efficiency of x̄. On the other hand, for every feasible
point (x̄, t) ≠ (x̄, t̄) with t ≠ t̄ , it is impossible that t ≤K t̄ since
g(x̄) ≤K t . In all, there is no (x, t) ≠ (x̄, t̄) with g(x) ≤K t such that
t ≤K t̄ , that is, (x̄, t̄) is a strictly efficient solution to problem (2.3).

The reverse can be discussed analogously with a slight differ-
ence. We need to prove t̄ = g(x̄) first whenever (x̄, t̄) is a strictly
efficient solution to problem (2.3). In fact, if not, there exists a point
(x̄, g(x̄)) ≠ (x̄, t̄) such that g(x̄) ≤K t̄ . Next, consider every x ≠ x̄.
Then g(x) ≤K t̄ cannot hold since (x, g(x)) ≠ (x̄, t̄). Thismeans that
there is no x ∈ X \ {x̄} such that g(x) ≤K g(x̄), that is, x̄ is a strictly
efficient solution to problem (2.2). �

Remark 2.1. Note that Min g(X) may not equal Min (g(X) + K) if
K is not pointed, while Min g(X) ⊂ Min (g(X) + K) holds always
provided that K is a convex cone [14]. For the case where K lacks
pointedness, problem (2.2) may not be equivalent to problem (2.3)
but can be deemed a safe approximation of problem (2.3).

Now set g(·) := fu(·), then for problem (1.1) we get

Min
x,t

t

s.t. f (x, u) ≤K t
x ∈ D.

After introducing robustness with respect to u, we have

Min
x,t

t

s.t. f (x, u) ≤K t, ∀u ∈ U
x ∈ D,

(2.5)

which is

Min
x,t

t

s.t. sup F(x) ≤K t
x ∈ D.

(2.6)

Since sup F(·) is single-valued, then by Lemma 2.1 again the last
problem is equivalent to

Min
x∈D

sup F(x). (2.7)

Definition 2.1. Problem (2.7) is called the robust counterpart in
the hard sense or H-robust counterpart of problem (1.1). Every
efficient solution to problem (2.7) is called the H-robust efficient
solution to problem (1.1); every strictly efficient solution to
problem (2.7) is called the H-robust strictly efficient solution to
problem (1.1).

Remark 2.2. It is obvious that robust counterpart (2.7) reduces
to robust counterpart (2.1) when problem (1.1) is a scalar
optimization problem in that sup F(x) = maxu∈U f (x, u).
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