
Operations Research Letters 43 (2015) 311–316

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Integration of progressive hedging and dual decomposition in
stochastic integer programs
Ge Guo a, Gabriel Hackebeil b, Sarah M. Ryan a,∗, Jean-Paul Watson b, David L. Woodruff c
a Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA
b Discrete Math and Complex Systems Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
c Graduate School of Management, University of California Davis, Davis, CA 95616, USA

a r t i c l e i n f o

Article history:
Received 2 January 2015
Received in revised form
24 March 2015
Accepted 26 March 2015
Available online 7 April 2015

Keywords:
Stochastic programming
Mixed-integer programming
Progressive hedging
Dual decomposition
Lower bounding

a b s t r a c t

Wepresent amethod for integrating the Progressive Hedging (PH) algorithm and the Dual Decomposition
(DD) algorithm of Carøe and Schultz for stochastic mixed-integer programs. Based on the correspondence
between lower bounds obtained with PH and DD, a method to transform weights from PH to Lagrange
multipliers in DD is found. Fast progress in early iterations of PH speeds up convergence of DD to an exact
solution. We report computational results on server location and unit commitment instances.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic mixed-integer programs find a broad application in
energy, facility location, production scheduling and other areas
where a set of decisions must be taken before full information is
revealed on some random events and some of the decisions are
required to be integer [1]. The combination of uncertainty and dis-
crete decisions leads to the difficulty in solving stochastic mixed-
integer programs.

Until now much progress has been made in developing algo-
rithms to solve these problems, extending from special instances
[13,15,24] to more general stochastic mixed-integer programs
[3,22]. Carøe and Schultz [2] developed a dual decomposition (DD)
algorithm based on scenario decomposition and Lagrangian re-
laxation. Lubin et al. [16] demonstrated the potential for parallel
speedup by addressing the bottleneck of parallelizing dual de-
composition. Originally proposed by Rockafellar and Wets [20]
for stochastic programs with only continuous variables, progres-
sive hedging (PH) has been successfully applied by Listes and
Dekker [14], Fan and Liu [6], Watson andWoodruff [26], and many
others as a heuristic to solve stochastic mixed-integer programs.
To assess the quality of the solutions generated by PH relative to

∗ Corresponding author. Tel.: +1 515 294 4347.
E-mail address: smryan@iastate.edu (S.M. Ryan).

the optimal solution, Gade et al. [8] presented a lower bounding
technique for the PH algorithm and showed that the best possible
lower bound obtained from PH is as tight as the lower bound ob-
tained using DD.

The PH algorithm can find high-quality solutions within a rea-
sonable number of iterations, but is not guaranteed to converge to
a globally optimal solution in the case of mixed-integer problems.
The DD algorithm, on the other hand, will achieve convergence
combined with branch and bound but may be slow. This paper
combines advantages of both scenario decompositionmethods. By
transforming PH weights into Lagrangian multipliers as a starting
point for DD, the convergence of DD can be sped up considerably.

The remainder of this paper is organized as follows. In Sec-
tion 2 we describe the PH and DD algorithms, two scenario-based
decomposition algorithms for stochastic mixed-integer programs.
Our integration approach to transfer information from PH to DD is
developed in Section 3. In Section 4, we document the implemen-
tation of our integration method and in Section 5, provide experi-
mental results on a set of stochastic server location instances and
two stochastic unit commitment instances.

2. Scenario decomposition algorithms for stochastic mixed
integer programs

Decomposition methods for stochastic programs generally fall
into two groups: stage-based methods and scenario-based meth-
ods [21]. The exemplary stage-based decomposition method is the

http://dx.doi.org/10.1016/j.orl.2015.03.008
0167-6377/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2015.03.008
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2015.03.008&domain=pdf
mailto:smryan@iastate.edu
http://dx.doi.org/10.1016/j.orl.2015.03.008


312 G. Guo et al. / Operations Research Letters 43 (2015) 311–316

L-shaped method, or Benders decomposition [25]. Paradigms of
scenario-based decomposition include the PH algorithm [20] and
the DD algorithm [2]. One advantage of scenario-based decom-
position methods over the stage-based ones is their mitigation
of the computational difficulty associated with large problem in-
stances by decomposing the problem by scenario and solving the
subproblems in parallel. In practical applications, PH can easily be
implemented as a ‘‘wrapper’’ for existing software for large-scale
implementation of the deterministic scenario problems. In this
section, we will discuss these two scenario-based decomposition
methods for stochastic mixed-integer programs in detail.

2.1. Two-stage stochastic mixed-integer program

We consider the following two-stage stochastic mixed-integer
program:

z = min{cx+ Q (x) : Ax = b, x ∈ X}, (1)

where Q (x) = Eξφ(x, ξ) and φ(x, ξ) = min{q(ξ)y : Wy = h(ξ)−

T (ξ)x, y ∈ Y }. Here cT ∈ Rn1 and b ∈ Rm1 are knownvectors,while
A ∈ Rm1×n1 andW ∈ Rm2×n2 are knownmatrices. The vector ξ is a
random variable defined on some probability space (Ξ ,ℑ, P) and
for each ξ ∈ Ξ , the vectors q(ξ)T ∈ Rn2 and h(ξ) ∈ Rm2 and the
matrix T (ξ) ∈ Rm2×n1 . The sets X ⊆ Rn1

+ and Y ⊆ Rn2
+ denote the

mixed-integer requirements on the first-stage and second-stage
variables. The decisions are two-stage in the sense that first-stage
decisions x have to be taken without full information on some ran-
dom events while second-stage decisions y are taken after full in-
formation is received on the realization of the randomvector ξ . The
notation Eξ denotes expectation with respect to the distribution
of ξ .

To avoid complications when computing the integral behind
Eξ we assume that we have only a finite number of realizations
of ξ , known as scenarios ξ j, j = 1, . . . , r , with corresponding
probabilities pj. Then problem (1) can be written as a large-scale
deterministic mixed-integer linear program with a block-angular
structure called the extensive formof the deterministic equivalent:

z = min


cx+

r
j=1

pjqjyj : (x, yj) ∈ S j, j = 1, . . . , r


, (2)

where S j = {(x, yj) : Ax = b, x ∈ X,Wyj = hj
− T jx, yj ∈ Y }.

The block-angular structure of Eq. (2) enables the decomposi-
tion methods to split it into scenario subproblems by introducing
copies of the first-stage variables. This idea leads to the so-called
scenario formulation of the stochastic program:

z = min
 r

j=1

pj(cxj + qjyj) : (xj, yj) ∈ S j,

j = 1, . . . , r, x1 = · · · = xr

. (3)

The subproblems are coupled by thenon-anticipativity constraints,
x1 = · · · = xr , which force the first-stage decisions to be scenario-
independent.

2.2. Dual decomposition

The dual decomposition (DD) algorithm of Carøe and Schultz
relaxes the non-anticipativity constraints and uses branch and
bound to restore non-anticipativity. DD obtains lower bounds on
the optimal value of problem (3) by solving the Lagrangian dual
obtained by relaxing the non-anticipativity constraints.

The non-anticipativity requirement of problem (3) can be
expressed by several equivalent representations. Lulli and Sen [17]

as well as Lubin and Martin [16] introduce an additional variable
x· and model non-anticipativity as

xj − x· = 0, j = 1, . . . , r, (4)

while Carøe and Schultz represent non-anticipativity by
r

j=1

H jxj = 0, (5)

where the matrix H j
∈ Rn1(r−1)×n1 .

Using non-anticipativity representation (4), the Lagrangian
relaxation of non-anticipativity constraints may be written as

P(λ) = min


r

j=1

[Rj(xj, yj, µj)− µjx·] : (xj, yj) ∈ S j


, (6)

where Rj(xj, yj, µj) = pj(cxj + qjyj) + µjxj for j = 1, . . . , r and
the parameter (µj)T ∈ Rn1 . The Lagrangian (6) is separable into
P(µ1, . . . , µr) =

r
j=1 Pj(µ

j), where

Pj(µj) = min{Rj(xj, yj, µj) : (xj, yj) ∈ S j}, (7)

with the condition
r

j=1 µj
= 0 required for boundedness of the

Lagrangian. The Lagrangian dual is expressed as

cLD = max
µ1,...,µr


P(µ1, . . . , µr) :

r
j=1

µj
= 0


. (8)

The non-anticipativity representation (5), on the other hand, leads
to the Lagrangian relaxation in the form

D(λ) = min


r

j=1

Lj(xj, yj, λ) : (xj, yj) ∈ S j


, (9)

where Lj(xj, yj, λ) = pj(cxj+qjyj)+λ(H jxj) for j = 1, . . . , r , where
the vector λ = (λ1, . . . , λr−1) and the vector (λj)T ∈ Rn1 . The
Lagrangian (9) is separable into D(λ) =

r
j=1 Dj(λ), where

Dj(λ) = min{Lj(xj, yj, λ) : (xj, yj) ∈ S j}. (10)

The Lagrangian dual problem then becomes the problem

zLD = max
λ

D(λ). (11)

The Lagrangian dual (11) is a convex non-smooth program and can
be solved using subgradient methods.

Due to the integer requirements in Eq. (2), a duality gap may
occur between the optimal value of the Lagrangian dual (11) and
the optimal value of Eq. (2) as described in the proof of Propo-
sition 2 in [2]. Lagrangian dual (11) provides lower bounds on
the optimal value of Eq. (2) and the optimal solutions of the La-
grangian relaxation. In general, these first-stage solutions will not
coincide unless the duality gap vanishes. The DD algorithm em-
ploys a branch and bound procedure that uses Lagrangian relax-
ation of non-anticipativity constraints as lower bounds [2].
Step 1 Initialization: Set z∗ = ∞ and let P consist of problem (2).
Step 2 Termination: If P = ∅ and z∗ < ∞, then x∗ with z∗ =
cx∗ + Q (x∗) is optimal.
Step 3 Node selection: Select and delete a problem P from P , solve
its Lagrangian dual (11). If the associated optimal value zLD(P)
equals infinity go to Step 2.
Step 4 Bounding: If zLD(P) is greater than z∗ go to Step 2. Otherwise
proceed as follows; if the first-stage solutions xj, j = 1, . . . , r , of
the subproblems are
(1) identical, then set z∗ := min{z∗, cxj + Q (xj)}.
(2) not identical, then compute a suggestion x̂ = Heu(x1, . . . , xr)

using some heuristic. If x̂ is feasible then let z∗ := min{z∗, cx̂+
Q (x̂)}. Go to Step 5.



Download English Version:

https://daneshyari.com/en/article/1142093

Download Persian Version:

https://daneshyari.com/article/1142093

Daneshyari.com

https://daneshyari.com/en/article/1142093
https://daneshyari.com/article/1142093
https://daneshyari.com

