
Operations Research Letters 43 (2015) 317–322

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Minimizing the number of switch instances on a flexible machine in
polynomial time
David Adjiashvili ∗, Sandro Bosio, Kevin Zemmer
Institute for Operations Research, ETH Zürich, Switzerland

a r t i c l e i n f o

Article history:
Received 26 August 2014
Received in revised form
1 April 2015
Accepted 1 April 2015
Available online 12 April 2015

Keywords:
Scheduling
Tool switching
Combinatorial algorithm
Manufacturing
Flexible machine

a b s t r a c t

We revisit the tool switching problem on a flexible manufacturing machine. We present a polynomial
algorithm for the problem of finding a switching plan that minimizes the number of tool switch instances
on the machine, given a fixed job sequence. We prove tight hardness results for the variable sequence
casewith the same objective function, aswell as a new objective function naturally arising inmulti-feeder
mailroom inserting systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A flexible manufacturing machine consists of a single produc-
tion line with C independent slots, each able to contain a single
tool out of a set of M different tools. A job corresponds to a prod-
uct that needs to be processed by the machine, and it is charac-
terized by a subset of required tools that need to be mounted on
the slots of the machine. While we always assume that there are
enough slots to produce any single job in the given batch, typically
the total number of tools is much larger than the number of slots.
Hence to complete a batch of jobs, it is often necessary to switch the
tools mounted onto the machine at different times of the produc-
tion. This gives rise to several optimization problems concerning
the tool switches. Formally, an instance of the tool switching prob-
lem consists of the number C of slots in the machine, a collection
I = {1, . . . ,M} of tools, and a collection J = {1, . . . ,N} of jobs.
Each job j ∈ J is associated with its required set of tools Ij ⊆ I . Ad-
ditionally, each job j has a production time dj ∈ Z>0, corresponding
to the consecutive number of time units required to complete its
production, and every tool i ∈ I has a setup time bi ∈ Z>0, that is
the number of consecutive time units that a slot needs to be idle
in order to load a tool on it. We also use Ji ⊆ J to denote the set of
jobs requiring tool i.

∗ Corresponding author.
E-mail addresses: david.adjiashvili@ifor.math.ethz.ch (D. Adjiashvili),

sandro.bosio@ifor.math.ethz.ch (S. Bosio), kevin.zemmer@ifor.math.ethz.ch
(K. Zemmer).

Given a production batch, the goal is to decide the production
order of the jobs as well as, for each job, the assignment of its tools
to the slots. In some cases the job sequence is fixed by themachine
operator, and only the tool assignment has to be decided. The lat-
ter type of problems, which we denote by fixed-sequence optimiza-
tion, are themain focus of this paper. For this class of problems, we
assume that the numbering of the jobs corresponds to their fixed
sequence. For the general variable-sequence case we prove some
complexity results, and we defer the required definitions to the
corresponding section.We represent a solution to a fixed-sequence
optimization problem by a plan F ∈ {0, . . . , C}

M×N where Fij = k if
tool i is assigned to slot k for job j, or Fij = 0 if i ∉ Ij. Since each slot
can only contain a single tool at any time, we have that Fij ≠ Flj for
any j ∈ J and i, l ∈ Ij. The solution to some optimization problems
considered here consists of a plan and some additional informa-
tion, computable only from the plan. We elaborate on this later on.

With a slight abuse of notation, we denote by J both the job set
{1, . . . ,N} and the job sequence (1, . . . ,N). We similarly denote
by S ⊆ J both a job subset and a job subsequence, i.e., a sequence
S = (a, . . . , e) of consecutive integers with 1 6 a 6 e 6 m. Also, in
the fixed-sequence case statements like ‘‘last’’, ‘‘first’’, ‘‘later’’ and
‘‘sooner’’ will correspond to the order given by J . We say that a pair
(i, j) is valid if j ∈ J and i ∈ Ij. Given a plan F and a valid pair (i, j), let

PrevJob(i, j) := max

q ∈ J : q < j, Flq = Fij for some l ∈ I


and PrevTool(i, j) := l, where l is such that Fl PrevJob(i,j) = Fij. Since
each slot can only contain a single tool at each time, PrevTool(i, j)
is well-defined. Informally, PrevJob(i, j) denotes the last job before

http://dx.doi.org/10.1016/j.orl.2015.04.001
0167-6377/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2015.04.001
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2015.04.001&domain=pdf
mailto:david.adjiashvili@ifor.math.ethz.ch
mailto:sandro.bosio@ifor.math.ethz.ch
mailto:kevin.zemmer@ifor.math.ethz.ch
http://dx.doi.org/10.1016/j.orl.2015.04.001


318 D. Adjiashvili et al. / Operations Research Letters 43 (2015) 317–322

job j during which slot Fij is used, and PrevTool(i, j) denotes the
tool that is present in slot Fij for the production of job PrevJob(i, j).
If no job uses slot Fij before job j we set PrevTool(i, j) = ⊗ and
PrevJob(i, j) = 0.

Let us define next the objective functions that are treated in
this paper. We say that plan F requires a tool switch (or, simply, a
switch) for tool i at job j, if (i, j) is a valid pair and PrevTool(i, j) ≠ i.
Informally, a tool switch is required if the slot Fij was either never
used before processing job j, or the tool that slot Fij contained pre-
vious to job j was different from i. Given a plan F, a slot k is said
to be idle at job j if there is no tool i such that Fij = k. Note that
idle slots do not need to be empty, i.e., they can still have tools
loaded in them. In fact, we implicitly assume that tools are never
unloaded from a slot unless a new tool is loaded in the same slot.
The idle time of slot Fij is defined as


ℓ∈Sij

dℓ where Sij = {ℓ ∈ N |

PrevJob(i, j) < ℓ < j}, i.e. it is the total time that the slot Fij was
not used before the production of job j. In particular, the idle time of
slot k at job j is zero if Fi(j−1) = k for some i. A switch for (i, j) results
in a setup violation if the total idle time of the slot Fij before process-
ing job j is less than bi, the setup time of tool i. Setup violations have
to be resolved by machine stops, which are usually not desirable
because they amount to additional idle time. How to determine an
optimal stop program for a given plan is described in Section 2.1.
The split degree of tool i is defined as

k | ∃(i, j) valid s.t. Fij = k
.

In other words, it is the number of distinct slots onto which tool i
is mounted in plan F, counting each slot only once even if a tool
is loaded onto the slot for multiple jobs. The split degree of a plan
is the sum of the split degrees of all tools. Observe that the split
degree of a plan F is invariant under permutations of the columns,
which correspond to alteration of the job sequence. Hence, the split
degree of a plan is independent of the job sequence, but only de-
pends on the collection of tool to slot assignments of all jobs.

Finally, the tool switch minimization, the machine stop minimiza-
tion and the splitminimization problems correspond to the problem
of finding a plan F with a minimum number of tool switches, ma-
chine stops, and split degree, respectively. We note that the split
degree of a plan is independent of the job sequence and the setup
and production times. In contrast, the stop minimization problem
critically depends on all these parameters, and comprises themain
focus of this paper. We describe our motivation for studying these
objective functions later on.

1.1. Contribution

Our main contribution is a first polynomial algorithm for the
machine stop minimization problem. In the special case where
every tool switch requires a machine stop, our algorithm finds a
plan minimizing the number of switch instances, i.e. the number of
jobs which require some switch. The algorithm and its analysis is
presented in Section 2. For the variable-sequence variants of the
machine stop minimization problem and the split minimization
problem, we show tight NP-hardness results in Section 4. Con-
cretely, we show that both problems are NP-hard for any C > 2.
Finally, we show in Section 3 that the fixed-sequence case and for
a fixed stop program, i.e. a fixed set of times inwhichmachine stops
are to be performed, it is possible to find in polynomial time a plan
that requires stops at most at these times andminimizes the num-
ber of required tool switches. The latter result allows us to solve
some bi-objective variants of the fixed-sequence problem. In par-
ticular, we can show lexicographic minimization of stops and tool
switches is possible for the well-studied case of uniform instances,
where all production and setup times are equal to one. This result
is the only one involving the tool switches objective in this paper.

Fig. 1. Inserting machine with C = 12 feeders, six on each side. Image courtesy of
Ferag AG, Switzerland.

1.2. Motivation

The motivation for our work stems from a collaboration with a
company in the mailing industry. In this context tools and jobs are
associatedwith advertisement inserts and folders (e.g., newspapers),
respectively. Fig. 1 illustrates an inserting machine with 12 tool
slots, corresponding to insert feeders. While the tool switch
minimization and stop minimization problems are relevant not
only for mailroom insert planning, the split minimization problem
defined here is more specific to this application. Concretely, in
order to use an insert on any feeder during the production, it is
often necessary to prepare a large pallet of this insert near the
feeder before the production starts. If an insert is used on more
than one feeder,multiple pallets have to be prepared for this insert.
Thus split degree of a plan corresponds to the number of pallets
that need to be prepared. As this preparationwork can be very time
consuming and the space for the pallets can be limited, minimizing
the total number of pallets that need to be prepared can become an
important objective.

1.3. Related work

A special case of the tool switchminimization problemwas first
introduced by Belady [1] in the context of virtual management in
computers. Tang and Denardo [12] were the first to give a polyno-
mial algorithm for the fixed-sequence tool switchingminimization
problem. Their elegant algorithm uses the keep tool needed soon-
est heuristic, which they proved to be optimal for this problem.
The authors provide some computational results for a natural IP
formulation of the variable-sequence variant of the problem. In a
follow-up paper Tang and Denardo [13] consider the problem of
minimizing the number of switch instances, which is a special case
of the stop minimization problem. The authors develop a branch-
and-bound procedure for the variable-sequence case, and prove its
NP-hardness. Crama et al. [2] use the theory of totally unimodular
matrices to provide a polynomial algorithm for amore general vari-
ant of the tool switchingminimization problem, in which switches
are weighted by their loading time. The authors also prove that the
variable-sequence problem is NP-hard. Privault and Finke [10] re-
duce the fixed-sequence tool switching minimization problem to
a minimum-cost flow problem. Song and Hwang [11] proposed a
polynomial algorithm for the problemwhen at most D tools can be
switched at any given time, for someD ∈ Z>0. Crama et al. [3] show
that the fixed-sequence tool switching minimization problem be-
comes NP-hard when tools have variable size, and when they are
physical, i.e., they occupy consecutive slots in the magazine. For a
fixed magazine size, the authors provide a polynomial time algo-
rithm. NP-hardness of the variable-sequence tool switch instances
minimization problem was proved by Crama and Oerlemans [4]
for C > 3. The authors also provide a column generation algo-
rithm, and analyze it empirically. Crama and van de Klundert [5]
analyzed the approximation guarantees of several heuristics for
the variable-sequence variants of the tool switching and the tool



Download	English	Version:

https://daneshyari.com/en/article/1142094

Download	Persian	Version:

https://daneshyari.com/article/1142094

Daneshyari.com

https://daneshyari.com/en/article/1142094
https://daneshyari.com/article/1142094
https://daneshyari.com/

