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a b s t r a c t

As ameans to understand the use of sparse cutting-planes in integer programming solvers, the paper Dey
et al. (2014) studied how well polytopes are approximated by using only sparse valid-inequalities. We
consider ‘‘less-idealized’’ questions such as: effect of sparse inequalities added to linear-programming
relaxation, effect on approximation by addition of a budgeted number of dense valid-inequalities, sparse-
approximation of polytope under every rotation and approximation by sparse inequalities in specific
directions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The paper [2] studied how well one can expect to approximate
polytopes using valid inequalities that are sparse. The motivation
for this study came from the usage of cutting-planes in integer
programming (IP) solvers. In principle, facet-defining inequalities
of the integer hull of a polytope can be dense, i.e. they can have
non-zero coefficients for a high number of variables. In practice,
however, most state-of-the-art IP solvers bias their cutting-plane
selection towards the use of sparse inequalities. This is done, in
part, to take advantage of the fact that linear programming solvers
can harness sparsity well to obtain significant speedups.

The paper [2] shows that for polytopes with a polynomial num-
ber of vertices, sparse inequalities produce very good approxima-
tions of polytopes. However,when the number of vertices increase,
the sparse inequalities do not provide a good approximation in
general; in fact with high probability the quality of approximation
is poor for random 0–1 polytopes with super polynomial number
of vertices (see details in [2]).

However the study in [2] is very ‘‘idealized’’ in the context of
cutting-planes for IPs, since almost always some dense cutting-
planes are used or one is interested in approximating the integer
only along certain directions. In this paper, we consider some nat-
ural extensions to understand the properties of sparse inequalities
under more ‘‘realistic conditions’’:
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1. All the results in the paper [2] deal with the case when we are
attempting to approximate the integer hull using only sparse
inequalities. However, in practice the LP relaxation may have
dense inequalities. Therefore we examine the following ques-
tion: Are there integer programs, such that sparse inequalities
do not approximate the integer hull well when added to a linear
programming relaxation?

2. More generally, we may consider attempting to improve the
approximation of a polytope by adding a few dense inequal-
ities together with sparse inequalities. Therefore we examine
the following question: Are there polytopes, where the quality
of approximation by sparse inequalities cannot be significantly
improved by adding polynomial (or even exponential) number
of arbitrary valid inequalities?

3. It is clear that the approximations of polytopes using sparse in-
equalities is not invariant under affine transformations (in par-
ticular rotations). This leaves open the possibility that a clever
reformulation of the polytope of interest may vastly improve
the approximation obtained by sparse cuts. Therefore a basic
question in this direction: Are there polytopes that are difficult
to approximate under every rotation?

4. In optimization one is usually concerned with the feasible re-
gion in the direction of the objective function. Therefore we
examine the following question: Are there polytopes that are
difficult to approximate in almost all directions using sparse in-
equalities?

We are able to present examples that answer each of the
above questions in the positive. This is perhaps not surprising:
an indication that sparse inequalities do not always approximate
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integer hulls well even in the more realistic settings considered in
this paper. Understandingwhen sparse inequalities are effective in
all the above settings is an important research direction.

The rest of the paper is organized as follows. Section 2 collects
all required preliminary definitions. In Section 3 we formally
present all the results. In Sections 4–7 we present proofs of the
various results.

2. Preliminaries

2.1. Definitions

For a natural number n, let [n] denote the set {1, . . . , n} and, for
non-negative integer k ≤ n let


[n]
k


denote the set of all subsets

of [n] with k elements. For any x ∈ Rn, let ∥x∥1 denote the l1 norm
of x and ∥x∥ or ∥x∥2 denote the l2 norm of x.

An inequality αx ≤ β is called k-sparse if α has at most k non-
zero components. Given a polytope P ⊂ Rn, Pk is defined as the
intersection of all k-sparse cuts valid for P (as in [2]), that is, the
best outer-approximation obtained from k-sparse inequalities. We
remark that Pk is also a polytope (see [2]).

Given two polytopes P,Q ⊂ Rn such that P ⊆ Q we consider
the Hausdorff distance d(P,Q ) between them:

d(P,Q ) := maxx∈Q

miny∈P∥x − y∥


.

When P,Q ⊂ [−1, 1]n, we have that d(P,Q ) is upper bounded
by 2

√
n, the largest distance between two points in [−1, 1]n. In

this case, if d(P,Q ) ∝
√
n the error of approximation of P

by Q is basically as large as it can be and smaller d(P,Q ) (for
example constant or of the order of

√
log n) will indicate better

approximations.
Given a polytope P ⊆ Rn and a vector c ∈ Rn, we define

gapkP(c) = max
x∈Pk

cx − max
x∈P

cx,

namely the ‘‘gap’’ between Pk and P in direction c. We first note
that d(P, Pk) equals the worst directional gap between Pk and P
(the proof is presented in Appendix A).

Lemma 1. For every polytope P ⊆ Rn, d(P, Pk) = maxc:∥c∥=1

gapkP(c).

For a set D = {α1x ≤ β1, . . . , αdx ≤ βd} of (possibly dense)
valid inequalities for P , let Pk,D denote the outer-approximation
obtained by adding all k-sparse cuts and the inequalities from D:

Pk,D
=


d

i=1


x ∈ Rn

: aix ≤ bi


Pk. (1)

Since Pk,D
⊆ Pk we have that d(P, Pk,D) ≤ d(P, Pk) for any set D

of valid inequalities for P .

2.2. Important Polytopes

Throughout the paper, we will focus our attention on the
polytopes Pt,n ⊆ [0, 1]n defined as

Pt,n =


x ∈ [0, 1]n :

n
i=1

xi ≤ t


. (2)

Notice that for t = 1 we obtain a simplex and for t = n/2 we
obtain half of the hypercube. Moreover different values to t yield
very different properties regarding approximability using sparse
inequalities, as discussed in [2].

Proposition 2. The following hold:

1. d(P1,n, P k
1,n) =

√
n
k −

1
√
n .

2. d(Pn/2,n, P k
n/2,n) =

 √
n/2 if k ≤ n/2

n
√
n

2k
−

√
n
2

if k > n/2
.

3. P k
t,n = [0, 1]n for all t ≤ n and k ≤ t.

We will also consider symmetrized versions of the polytopes
Pt,n. To define this symmetrization, for x ∈ Rn and I ⊂ [n]
let xI denote the vector obtained by switching the sign of the
components of x not in I:

xIi =


xi if i ∈ I

−xi if i ∉ I.

More generally, for a set P ⊆ Rn we define P I
=

xI ∈ Rn

: x ∈ P

.

Definition 3. For a polytope P ⊆ Rn
+
, we define its symmetrized

version P = conv


I⊆[n] P
I

.

Note that P1,n is the cross polytope in dimension n; more
generally, we have the following external description of the
symmetrized versions of Pt,n and P k

t,n (proof presented in
Appendix B).

Lemma 4.

Pt,n =


x ∈ [−1, 1]n : ∀I ⊂ [n] ,


i∈I

xi −

i∈[n]\I

xi ≤ t


(3)

Pt,n
k

=


x ∈ [−1, 1]n : ∀I ∈


[n]
k


, ∀I+, I− partition of I,

i∈I+
xi −


i∈I−

xi ≤ t


. (4)

3. Main results

In our first result (Section 4), we point out that in the worst
case LP relaxations plus sparse inequalities provide a very weak
approximation of the integer hull.

Theorem 5. For every even integer n there is a polytope Qn ⊆ [0, 1]n
such that:

1. Pn/2,n = conv(Qn ∩ Zn)

2. d(Pn/2,n, (Pn/2,n)
k
∩ Qn) = Ω

√
n

for all k ≤ n/2.

In Section 5 we consider the second question: How well does
the approximation improve if we allowed a budgeted number of
dense valid inequalities. Notice that for the polytope P n

2 ,n, while
Proposition 2 gives that d(P n

2 ,n, P k
n
2 ,n) ≥ Ω(

√
n), adding exactly

one dense cut (ex ≤ n/2) to the k-sparse closure (even for k = 1)
would yield the original polytope P n

2 ,n.
We consider instead the symmetrized polytope P n

2 ,n. Notice
that while this polytope needs 2n dense inequality to be described
exactly, it could be that a small number of dense inequalities,
together with sparse cuts, is already enough to provide a good
approximation; we observe that in higher dimensions valid cuts
for P n

2 ,n can actually cut off significant portions of [−1, 1]n in
multiple orthants. Nevertheless, we show that exponentially many
dense inequalities are required to improve the approximation
significantly.
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