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a b s t r a c t

This paper addresses a dynamic resource allocation problem which has its roots in airline revenue man-
agement, and where customers select the available product that ranks highest on a preset list of pref-
erences. The problem is formulated as a flexible mathematical program that can easily embed technical
and practical constraints, as well as accommodate hybrid (parametric–nonparametric) choice models.
We propose for its solution a column generation algorithmwhose performance, both in terms of solution
quality and processing time, is assessed against that of alternative approaches.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic resource allocation is the main element of revenue
management (RM), the discipline whose aim is to improve a
firm’s profitability through efficient pricing and asset manage-
ment. These issues involve the design of decision rules that, over
the booking horizon, allow or deny access to products that use
common resources, based on assumptions concerning the behavior
of customers facing distinct options [9].

While traditional RM models assume cross-product indepen-
dence, as well as independence from both capacity control strate-
gies and from the state of the market, more sophisticated discrete
choice models have become increasingly popular [9]. These posit
that customer behavior is dictated not only by product availability,
but also by products’ attributes (price, quality, restrictions, willing-
ness to pay, etc.) [10]. In turn, alternative parametric models that
obviate some of these models’ limitations have been proposed [5].

In this paper, departing from the parametric approach, we con-
sider a framework where the customer population is partitioned
into segments, each segment being associated with an ordered list
of product preferences that includes the ‘no purchase’ option. This
demandmodel is then embeddedwithin a capacity control system.
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More precisely, given a stochastic arrival process that governs each
segment, acceptance rules that determine the optimal set of prod-
ucts offered in each time period are obtained through the solution
of a deterministic mathematical program. An important feature of
the model is its flexibility with respect to additional constraints. In
particular, it can accommodate arbitrary topologies that go beyond
the traditional hub-and-spoke architecture, aswell as user-specific
constraints.

Our contribution is twofold. First, we propose a nonparametric
model for choice-based revenue maximization, through the spec-
ification of the optimal sets of products that are made available at
each booking period. Next, in the view that the number of vari-
ables grows exponentially with the number of products, we de-
velop an efficient column generation algorithm that exploits the
specific structure of the choice model, and has the capability of ad-
dressing real-life instances.

The structure of the paper is as follows. In Section 2, we review
themain concepts of choice-baseddemandmodels, contrasting the
parametric and nonparametric approaches. In Section 3, we intro-
duce our mathematical programming framework. In Section 4, we
develop a column generation scheme for its solution; in particu-
lar, we provide an efficient algorithm for tackling the nonconvex
subproblems. In Section 5, we illustrate through computational ex-
periments that our approach can address realistic instances, and
provide a comparison with alternative approaches from the RM
literature. Finally, in the concluding section, we outline the chal-
lenges that remain to be addressed.
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2. Choice modeling

In this section, we briefly survey choice modeling. Indeed, a
key issue in network revenue management is that of estimating
the probability Pj(S) that a product j be selected by an arriving
customer, given that a set S of products is on offer. Two main
classes of models have been proposed for its solution. Parametric
choice models are built upon the Random Utility Maximization
paradigm [1], whereby products are assigned attributes, and
customers select the product that maximizes their own utility,
expressed as a weighted sum of the attributes’ values. Depending
on the statistical model underlying the selection process, one
derives a variety of models: multinomial logit (MNL), nested logit,
mixed logit, probit, generalized extreme value, etc.

Although random utility models are easy to understand, embed
detailed information about products’ features, and allow the
accurate estimation of utilities, they yet suffer serious flaws. First,
the choice of an appropriate parametric structure may not be
obvious and, once a structure is adopted, the model is not flexible
with respect to perturbations in the available information [5].
Next, specific random utility models have specific drawbacks.
For example, MNL’s independence of irrelevant alternatives
property yields unrealistic substitution patterns, while the more
sophisticated nested or mixed logit models are computationally
challenging, both from an estimation and assignment viewpoint.

In contrast, nonparametric choice models are driven by
historical data and do not assume specific probability distributions.
They are highly flexible, dynamic, and provide more precise
estimates of customer’s choice behavior [5]. Due to the availability
and increasing accuracy of large amounts of historical data, these
choice models have been gaining in popularity and interest.

In the nonparametric choice model adopted in this paper, we
assume that each demand segment is characterized by an Ordered
Preference List (OPL),whereby customers select the available prod-
uct that ranks highest on their OPL, possibly leaving the market
if no available product belongs to the list [3,4]. The concept of
OPL was first introduced in [8], while [5,12] proposed different
procedures to estimate a non-parametric choice model. Within
this framework, [11,3] used the concept of OPL to formulate a
choice based capacity control model, and proposed for its numer-
ical solution a stochastic gradient algorithm; [6] developed an al-
gorithm to compute optimal assortments under a nonparametric
choice model of demand; [8] proposed a model to compute opti-
mal retail assortments, in an environment where customers adapt
dynamically to available stocks; [4] have proposed OPL-based
linear stochastic formulations of the revenue maximization prob-
lem which, unfortunately, become intractable as the number of
scenarios grows. To tackle this problem, they proposed a heuristic
approach and estimated a linear approximation of their stochastic
model. This method reduces the processing time, however, and re-
duces the quality of the solution. Our approach shares several fea-
tures with this work, while lifting its computational limitations.

3. Problem formulation

Let us consider a system where an arrival stream of customers
follows a Poisson process with rate λ. Whenever a customer shows
up, he selects the available product that ranks highest on his
preference list. The aim of the model is to determine, over a finite
planning horizon, the set of products to be offered at any given
‘booking’ period, in order to maximize total revenue. Of course,
a product can only enter the offer set if the amount of resources
required does not exceed the residual amount available.

Themain parameters underlying the dynamic RMmodel are the
followings:

T : ordered set of time (booking) periods indexed forward
J: set of products
rj: revenue associated with product j ∈ J
I: set of resources
ci: initial amount of resource i ∈ I
L: set of customer segments
pl: proportion of customers belonging to segment l
λl = λpl: arrival rate of segment l ∈ L
Pl = exp(−λpl): probability of an arrival issued from segment l ∈

Lwithin an arbitrary time period
Ol

= {jl1, j
l
2, . . . , j

l
Kl
}: ordered preference list (OPL) of products

associated with customer segment l ∈ L
aij: Boolean constant indicatingwhether resource i is used by

product j (aij = 1) or not (aij = 0). Thematrix Awhose el-
ements are the aij’s is referred to as the product-resource
incidence matrix or, simply, the incidence matrix.

S ∈ 2J : set of products, possibly including the ‘null’ product
Ol(S) = {jl1(S), j

l
2(S), . . . , j

l
Kl(S)

(S)} ⊆ Ol: ordered preference list
(OPL) of cardinality Kl(S) associated with offer set S and
customer segment l ∈ L.

Assuming that there is at most one arrival within any given time
period, the probability of choosing product j when set S is offered
is equal to

Pj(S) =


l:jl1(S)=j

Pl, (1)

where jl1(S) is the first available preferred product of segment l
among those belonging to the offer set S. This yields the expected
revenue

R(S) =


j∈S

Pj(S)rj (2)

and the expected capacity usage of set S

Qi(S) =


j∈S

Pj(S)aij. (3)

The variables of the model are the indicators Xt(S), which
specify whether the subset of products S is offered or not in period
t . For the sake of computational tractability, we allow these binary
variables to assume fractional values. Based upon these definitions,
letting X = (Xt(S))t,S , and denoting by |E| the cardinality of a
generic set E, the model can be expressed as the linear program

LP: max
X

λ

t∈T


S∈2J

R(S)Xt(S)

subject to 
t∈T


S∈2J

λQi(S)Xt(S) ≤ ci ∀i ∈ I, (4)


S∈2J

Xt(S) ≤ 1, ∀t ∈ T , (5)

0 ≤ Xt(S) ≤ 1 ∀t ∈ T , S ∈ 2J , (6)

where the number of decision variables 2|J|
− 1 is exponential (the

empty set is excluded).
Note that the above program is similar to the customer MNL-

based deterministic linear programming model (CDLP) considered
by [7,2], the main differences being the way we model customer’s
choice behavior, and the waywe compute the related probabilities
that lead to the values of R(S) and Qi(S). Note also that, in
contrast with [7,2], our decision variables are related to individual
time periods, thus allowing a finer control over the individual
booking periods. Finally, the use of ordered preference lists allows
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