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a b s t r a c t

In a two node tandem network, customers decide to join or balk by maximizing a given profit function
whose costs are proportional to the sojourn time they spend at each queue. Assuming that their choices
are taken without knowing the complete state of the system, we show that a pure threshold equilibrium
policy exists. In particular we analyze the case when the partial information consists in informing the
arrival customers of the total number of users in the network.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Queueing literature is recently devoting an increasing attention
to the economic analysis of queueing systems. Indeed in real
applications it is not uncommon that the input to a queueing
system is not exogenously defined and is the result of the combined
effect of the decisions made by the arriving customers. They
may decide whether to join or balk the system according to
their convenience and these choices in general lead to a final
equilibrium. This phenomenon is mathematically modeled by
assuming they are rationally optimizing a given individual profit
function. This research, started in the ’70s by [8,4], nowhas reached
a good maturity, two central monographs are [6,11]. Most of the
literature focuses on a single server system, while we focus here
on network models, in particular a series of two M/M/· queues.
Previous studies have looked at parallel queues [12,5,7] and for
more general topologies extensive studies have been done in the
field of telecommunications, see [3,9]. A close model is [1], where
a series of queues of M/M/m types is analyzed and the form of
the symmetric customer equilibrium is derived together with the
explicit socially optimal strategies. The main difference with our
model is that there customersmake their decisionswithout getting
any information on the state of the system, while here they know
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the total number of customers already inside. Usually network
models show an intrinsic difficulty in getting explicit results, and
this partially explains a relatively scarcer literature. The two node
tandem network that we study has the advantage of being simpler
and allowing a complete analysis. Customers make the decisions
to balk or join after knowing how many customers are already
in the network. In real applications, it is common that people do
not know the complete information on the state of the system,
as usually this information is shortly summarized to simplify the
decision process. Examples may be found in healthcare systems,
where treatment requires two different steps, such as a first queue
to get a doctor reservation and a second queue to be attended by
the doctor. The interesting result is that the partial information
setting simplifies drastically the analysis, allowing to get for this
specific case explicit results.

The model is introduced in Section 2, we compute in Section 3
the expected sojourn time of an arriving customer assuming that
the full state of the system is known. In Section 4 the same analysis
is done when the arriving customers are informed about the total
number of customers in the network. Finally we compute the
equilibrium strategy in Section 5.

2. The model

We consider a tandem network with two single server
nodes with infinite buffers and service times independent and
exponentially distributed. Using the index l, with l = 1 or 2, to
refer to the first or the second node, we denote by µl the service
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rate at node l. Customers arrive to the systemaccording to a Poisson
process with rate λ and before joining the network they receive
partial information about the state of the system. The state space
is N2, that is all possible pairs (Q1,Q2) with Ql the queue length
at node l. A tagged customer that just arrives, gets a reword R for
joining the network, and pays for each unit of sojourn time at node
l a cost Cl with a resulting random profit given by P = R − C1 S1 −

C2 S2, where Sl denotes the sojourn times shewould spend at node l.
The tagged user makes her decision by optimizing the expected

profit given the information she receives at her arrival time, k =

Q1 + Q2, that is

PK (k) = R − C1 TK ,1(k) − C2 TK ,2(k), (1)

with TK ,l = EK [Sl|Q1 + Q2 = k]. The subindex K tells that the rest
of the population is using a pure threshold strategy with threshold
K in joining the queue. That is all users besides the tagged one join
the network if and only if it contains less than K customers.

Themain result of the paper is to show that the tandemnetwork
admits a pure threshold K , that is there exists a K ∈ N such that

PK (k) ≥ 0 as k < K and PK (k) < 0 as k ≥ K .

Remark 1. By using the subindex K , we are implicitly assuming
that the rest of the population is not allowed to use strategies
different from a pure threshold one. This assumption is not
restrictive for our purposes, but it does not preclude the existence
of policies (even of equilibrium type) that are of a different form.

Remark 2. We always assume that R > C1/µ1 +C2/µ2. Being this
relation false, a user would get negative net profit even joining an
empty network implying a unique equilibrium given by the empty
system.

Before analyzing the described model, we first study the
case when the complete information is available to the arriving
customers. This is done in the next section.

3. Mean sojourn times

Let Sl(n,m) be the sojourn time spent at queue l by a tagged
customer that joins a system being in state (n − 1,m), that is she
is going to occupy position n in the first queue. Let Tl(n,m) =

E[Sl(n,m)] be the corresponding expectation and T (n,m) =

T1(n,m) + T2(n,m) the total expected sojourn time. The sojourn
time in the first queue is Erlang distributed, that is S1(n,m) ∼

Erlang(n, µ1) with mean T1(n,m) = n/µ1. The total sojourn time
can be computed recursively by applying a first step analysis, that
leads to the following formula,

T (n,m) =
1

µ1 + µ2
+

µ1

µ1 + µ2
T (n − 1,m + 1)

+
µ2

µ1 + µ2
T (n,m − 1), n, m > 0. (2)

The second term on the right hand side of (2) considers a
potential departure from the first queue and the last term a
potential departure from the second queue. These events occur
with probability µl/(µ1 + µ2), l = 1, 2 respectively. To complete
the recursion the following boundary conditions are needed

T (0,m) =
m
µ2

; T (n + 1, 0) =
1
µ1

+ T (n, 1), n, m > 0. (3)

Using (2) we get a recursive formula to compute T2(n,m) as shown
in the following lemma.

Lemma 3. The expected sojourn time at the second queue, T2(n,m),
can be computed with the following recursive formula

T2(n,m) =


µ2

µ1 + µ2

m

T2(n − 1, 1)

+
µ1

µ1 + µ2

m−1
k=0


µ2

µ1 + µ2

k

T2(n − 1,m + 1 − k) (4)

valid for n > 0 and T2(0,m) = m/µ2, with m ≥ 0.

Proof. By (2), we get that T2(n,m) satisfies the following recursive
equation

T2(n,m) =
µ1

µ1 + µ2
T2(n − 1,m + 1)

+
µ2

µ1 + µ2
T2(n,m − 1), n, m > 0,

and by (3), similar boundary conditions are satisfied. By induction
argument it is then straightforward to verify that (4) holds
true. �

The following lemma characterizes the conditions under which
the T -functions are monotone non-decreasing in the variable n.
These conditions are important for the analysis of Section 5.

Lemma 4. The functions T1(n,m) and T (n, k−n) are non decreasing
in n. The function T2(n,m) is non decreasing in n if and only if µ1 ≥

µ2.

Proof. The statement is obvious for T1(n,m) that does not depend
onm.

Oneway to show that the function T (n, k−n) is non decreasing
in n, for n ≤ k is by proving that T (n + 1,m) ≥ T (n,m +

1) by induction using Eqs. (2)–(3). We prefer to use a coupling
argument. Using the same probability space, we construct two
networks starting respectivelywith (n+1,m) and (n,m+1) initial
users. The proof follows by comparing the waiting times of the
customers that are the last ones in the first queue of both networks,
and showing that the one in the former network waits more than
the corresponding one in the latter. To construct the coupling we
assume that the service times for all customers are the same in
both networks but we move the customer in service at the first
queue of the first network at the end of the queue of the second
node of the second network. Since the exit times are ordered by
the FIFO discipline and because the moved customer reduces its
sojourn time by her service time in the first node, the result holds.

Finally to show that T2(n,m) is non decreasing in n we prove
that ∆1T2(0,m) ≥ 0 for allmwhere ∆1T2(n,m) = T2(n+ 1,m)−

T2(n,m). From (4), the following holds for any n > 0 andm ≥ 0,

∆1T2(n,m) =


µ2

µ1 + µ2

m

∆1T2(n − 1, 1) +
µ1

µ1 + µ2

×

m−1
k=0


µ2

µ1 + µ2

k

∆1T2(n − 1,m + 1 − k). (5)

If∆1T2(0,m) ≥ 0 the same holds for n > 0 as all the coefficients in
(5) are positive. In the opposite case T2(n,m) is clearly decreasing
for some value of (n,m). Let α = µ1/µ2, one can check that

∆1T2(0,m) =
1
µ2


α − 1 + (α + 1)−m

α


.

The quantity above is decreasing in m. To check that it would be
non negative for any value of m we take m → ∞ and get the
required condition α ≥ 1. �



Download English Version:

https://daneshyari.com/en/article/1142106

Download Persian Version:

https://daneshyari.com/article/1142106

Daneshyari.com

https://daneshyari.com/en/article/1142106
https://daneshyari.com/article/1142106
https://daneshyari.com

