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a b s t r a c t

In this paper, we present a new primal–dual interior-point algorithm for linear optimization based on a
trigonometric kernel function. By simple analysis, we derive the worst case complexity for a large-update
primal–dual interior-point method based on this kernel function. This complexity estimate improves a
result from El Ghami et al. (2012) and matches the one obtained in Reza Peza Peyghami et al. (2014).
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1. Introduction

After the landmark paper of Karmarkar [4], linear optimization
(LO) became an active area of research, due to their wide applica-
tions in the realworld problems. The resulting interior-pointmeth-
ods (IPMs) are now among the most effective methods for solving
LO problems. A number of various IPMs has been proposed and an-
alyzed. For these the reader refers to [11,12,5,6,2]. The primal–dual
IPMs for LO problems were firstly introduced by Megiddo [11].

Peng et al. [7] introduced a class of ‘‘self-regular kernel func-
tions’’ and designed primal–dual IPMs based on this class of
functions for LO and SDO. They obtained O(

√
n log n log(n/ε))

complexity bound for large-update primal–dual IPMs for LO. Later
on, Qian et al. [9] proposed a new kernel function with simple al-
gebraic expression for SDO and established the iteration complex-
ity as O(n3/4 log(n/ε)). Recently, M. EI Ghami et al. [3] presented a
large-update IPM based on a kernel function with a trigonometric
barrier term for LO and obtained the same iteration boundwith [9].
Very recently,M. Reza Peyghami et al. [10] proposed a large-update
IPMbased on a trigonometric kernel function and derived the poly-
nomial complexity enjoys O(n2/3 log(n/ε)), which improved the
complexity result for trigonometric kernel function than [9].

Motivated by their work, in this paper we introduce a new
trigonometric kernel function (neither self-regular function nor
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the function that [3,10] proposed) and propose a IPM for LO based
on this kernel function. We develop some new analytic tools that
are used in the complexity analysis of the algorithm. Finally,we ob-
tain the same complexity result with [1] for the large-update pri-
mal–dual IPM.

The paper is organized as follows. In Section 2, we briefly recall
the basic concepts of IPMs for LO. The generic primal–dual IPM for
LO is presented in Section 3. In Section 4,we introduce a newkernel
function and study its properties. Finally, we analyze the algorithm
and obtain the worst case complexity result in Section 5.

2. Preliminaries

In this section, we briefly recall the basic concepts of IPMs for
LO. The standard LO problem is as follows

(P) min {cT x : Ax = b, x ≥ 0},

where A ∈ Rm×n with rank(A) = m ≤ n, x, c ∈ Rn and b ∈ Rm. The
dual problem of (P) is given by

(D) max {bTy : ATy + s = c, s ≥ 0},

where y ∈ Rm and s ∈ Rn. Without loss of generality, we may
assume that the problems (P) and (D) satisfy the interior-point
condition (IPC) [4], i.e., there exist x0 and (y0, s0) such that

Ax0 = b, x0 > 0, ATy0 + s0 = c, s0 > 0.

It is well known that finding an optimal solution of (P) and (D)
is equivalent to solving the following system

Ax = b, x ≥ 0, ATy + s = c, s ≥ 0, xs = 0. (1)
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The basic idea of primal–dual IPMs is to replace the third equation
in (1) by a parametric equation xs = µe, where µ is a positive
parameter, i.e.,

Ax = b, x ≥ 0, ATy + s = c, s ≥ 0, xs = µe. (2)
Surprisingly enough, if the IPC is satisfied, the parameterized
system (2) has a unique solution, for each µ > 0. It is denoted
as (x(µ), y(µ), s(µ)) and we call x(µ) the µ-center of (P) and
(y(µ), s(µ)) the µ-center of (D). The set of µ-centers (with µ
running through all positive real numbers) gives a homotopy path,
which is called the central path of (P) and (D). The relevance of
the central path for LOwas recognized first by Sonnevend [12] and
Megiddo [5]. Ifµ → 0, then the limit of the central path exists and
since the limit points satisfy the complementarity condition, the
limit yields optimal solutions for (P) and (D).

For fixed µ > 0, a direct application of the Newton method to
the system (2), we have the following system

A∆x = 0, AT∆y +∆s = 0, s∆x + x∆s = µe − xs. (3)
Since A has full row rank, the system (3) has a unique solution
(△x,△y,△s) which defines the search direction. By taking a step
along the search direction, one constructs a new iterate point
x+ := x + α△x, y+ := y + α△y, s+ := s + α△s, (4)
where α ∈ (0, 1] is obtained by using some rules so that the new
iterate satisfies (x+, y+, s+) > 0.

For the motivation of the new method, let us define the scaled
vector v as
v :=


xs/µ.

Note that the pair (x, s) coincides with theµ-center (x(µ), s(µ)) if
and only if v = e. Using the scaled vector v, the Newton system (3)
can be rewritten as

Adx = 0, A
T
△y + ds = 0, dx + ds = v−1

− v, (5)
where

A := (1/µ)AV−1X = AS−1V , dx = v△x/x, ds = v△s/s. (6)
A crucial observation is that the right hand side v−1

− v in the
third equation of (5) equals minus gradient of the barrier function
Ψ (v) =

n
i=1 ψc(vi), ψc(t) = (t2 − 1)/2 − log t , for t > 0, it can

be easily seen thatψc(t) is a strictly differentiable convex function
on Rn

++
with ψc(e) = ψc

′(e) = 0, i.e., it attains its minimal value
at t = e. In this paper, we replace the barrier function Ψc(v) by
a barrier function Ψ (v) =

n
i=1 ψ(vi), where ψ(v) is any strictly

differentiable convex function on Rn
++

with ψ(e) = ψ ′(e) = 0,
the system (5) is converted to the following system

Adx = 0, A
T
△y + ds = 0, dx + ds = −∇Ψ (v). (7)

3. A generic primal–dual interior-point algorithm

The generic form of the algorithm is shown in Fig. 1.

Remark 1. The choice of the barrier update parameter θ plays an
important role in both theory and practice of IPMs. Usually, if θ
is a constant independent of the dimension n of the problem, for
instance, θ = 1/2, then we call the algorithm a large-update (or
long-step) method. If θ depends on the dimension of the problem,
such as θ = 1/

√
n, then the algorithm is called a small-update (or

short-step) method.

Remark 2. The choice of the step size α (α > 0) is another crucial
issue in the analysis of the algorithm. In the theoretical analysis the
step size α is usually given a value that depends on the closeness of
the current iterates to the µ-center. Hence it has to be made sure
that the closeness of the iterates to the current µ-center improves
by a sufficient amount.

Fig. 1. Generic primal–dual algorithm for LO.

4. The new kernel function and its properties

This section is devoted to introduce a new kernel function and
study its properties, which are used in the complexity analysis of
Algorithm 1.

In this paper, we consider a new univariate function as follows

ψ(t) = (t − 1)2/2t + (t − 1)2/2 + tan2 h(t)/8, (8)

where

h(t) = π(1 − t)/(4t + 2). (9)

This kernel function has a trigonometric term which differs from
the one proposed in [9] and from the one proposed by [3,10]. The
first three derivatives of the function ψ(t) are

ψ ′(t) = (2t3 − t2 − 1)/2t2 + h′(t) tan h(t)(1 + tan2 h(t))/4,

ψ ′′(t) = (1 + t3)/t3 + (1 + tan2 h(t))
× [h′′(t) tan h(t)+ h′2(t)(1 + 3 tan2 h(t))]/4,

ψ ′′′(t) = −3/t4 + (1 + tan2 h(t))k(t)/4,

where

h′(t) = −6π/(2 + 4t)2 < 0, h′′(t) = 48π/(2 + 4t)3 > 0,
h′′′(t) = −576π/(2 + 4t)4 < 0,

k(t) := 3h′(t)h′′(t)(1 + 3 tan2 h(t))
+ 4h′3(t) tan h(t)(2 + 3 tan2 h(t))+ h′′′(t) tan h(t)).

In order to study the properties of our kernel function, we need
the following technical lemmas.

Lemma 4.1 (Lemma 2.1 in [3]). For the function h(t) defined in (9),
one has

tan h(t)− 1/(3π t) > 0, 0 < t ≤ 1/2. (10)

Lemma 4.2. Let ψ(t) be as defined in (8), then

(i) ψ ′′(t) > 1, ∀t > 0, (11)

(ii) tψ ′′(t)+ ψ ′(t) > 0, ∀t > 0, (12)

(iii) tψ ′′(t)− ψ ′(t) > 0, ∀t > 0, (13)

(iv) ψ ′′′(t) < 0, ∀t > 0. (14)

Proof. The detailed proof see http://wenku.baidu.com/view/
8a3c985033d4b14e84246833 or see Appendix. �
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