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a b s t r a c t

We give necessary and sufficient conditions for finite detection of an optimal initial decision for infinite
horizon optimization under a broad set of assumptions and provide an algorithm that is guaranteed to
solve every solvable problemunder these assumptions.We illustrate the theory and algorithmsdeveloped
with applications in production planning.
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1. Introduction

Planners confronted by the task of making an optimal decision
today cannot avoid the challenge that the quality of today’s
decision depends on the world one will face and the associated
decisions one will make in the future. Key to this decision process
is the length of the horizon over which decisions will be made.
For example, the best current decision will preclude expensive
actions whose investment must be recovered by savings over the
long run if the study horizon is short. On the other hand, for firms
that anticipate being in business for the long run, that horizon is
typically indefinitewith no predetermined end. In these situations,
an infinite horizon model seems appropriate. However, unless one
adopts the heroic assumption that the future will bring a world
like the present, one is confronted by the task of forecasting an
unlimited quantity of data. To attempt to overcome this, planners
have traditionally adopted one of two alternatives. One can model
the problem with stationary but stochastic data at least providing
the illusion of a dynamic and changing world while the probability
distributions remain stationary. Alternatively, the planner can
adopt a limited lookahead and simply incorporate a nonstationary
finite horizon model in place of the infinite horizon problem one
actually confronts. The problem that arises here is the tendency of
today’s decision to be distorted by end of study effects. However, if
those end of study distortions eventually stop, one can argue that
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one has found an optimal decision for today to the true underlying
infinite horizon problem. In order to be certain a finite horizon
optimal decision has in fact stabilized and will not change were
we to lengthen it, we must somehow know that unrevealed data
beyond the current horizon will not affect the optimality of the
currently optimal decision in hand. Such a horizon is called a
forecast horizon.

Considerable effort has been expended in the literature to
establish conditions under which such a forecast horizon exists.
Examples for which no forecast horizon exists can be found in
the context of general infinite horizon optimization [1], production
planning [4], and asset selling [6]. Classes of nonstationary infinite
horizon optimization problems for which forecast horizons do
exist have generally relied upon either uniqueness of the optimal
immediate decision or monotonicity of that decision as a function
of horizon length. For example, uniqueness of the first optimal
decision has been established as a sufficient condition for existence
of a forecast horizon for a very general class of infinite horizon
optimization problems in [1]. However, although it is believed
that real world problems generally satisfy this condition, we
typically do not know how to check for this condition in a specific
instance [12]. Indeed, if a forecast horizon does not exist (a
situation wewill call failure to be well-posed), the problem cannot
be solved. In [6], authors give an example of such a problem
whereby no matter how many periods of data are forecasted, the
data not yet seen can make any decision either optimal or not
optimal, thus rendering the task of determining the next best
decision impossible. Such a problem is not solvable by forecasts
of finite data sets, no matter how large.
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This paper formalizes these notions ofwell-posedness and solv-
ability for a very general class of infinite horizon problems and in-
troduces the new notion of coalescence of optimal states, which
we show to be equivalent to being well-posed and solvable. We
give necessary and sufficient conditions for finite detection of an
optimal initial decision under a broad set of assumptions involv-
ing reachability between states. We show that under these as-
sumptions, coalescence and well-posedness are equivalent, and
give a solution procedure that is guaranteed to solve any well-
posed problem with these properties. In particular, we provide a
finite algorithm that is guaranteed to solve every solvable problem
within this class of infinite horizon, deterministic nonstationary
problems.We show that these reachability conditions are satisfied
in infinite horizon production planning. An additional example of
equipment replacement problem can be found in [10].

1.1. Related work

There is a substantial literature both in establishing general
conditions under which a forecast horizon exists, and in develop-
ing solution procedures that will yield an infinite horizon optimal
initial decision for an infinite horizon nonstationary optimization
problem. An excellent classified bibliography of research endeav-
ors in both of these directions over a broad spectrum of applica-
tions and theory can be found in [5]. In light of that article, we will
only mention other research as it directly pertains to our work.

The problems studied in this paper all satisfy the condition that
there exists a feasible solution with finite total discounted cost,
and our optimality criterion will be that of total discounted cost.
Under such conditions, one can bound the maximum deviation
from optimal total cost by solving to optimality a finite horizon
version of the problem. That is, one can obtain optimal solutions
over a finite horizon together with bounds on cost-to-go that
ensure total cost within error ϵ of the optimal infinite horizon cost
for any ϵ > 0. This paper adopts the more challenging objective of
seeking convergence by looking at incrementally longer finite horizon
problems not just in terms of cost error, but also in terms of policy
error.

It is often the case that there exists a sequence of selections of
finite horizon optimal initial decisions that agrees, in finite time,
with an infinite horizon optimal initial decision. Algorithms to de-
termine such selections typically require the existence of forecast
horizons. In general deterministic optimization, Bean and Smith [1]
show that a forecast horizon exists for a very general class of prob-
lemswhen the optimal solution is unique. Later Bean and Smith [2]
extending an algorithm in [8] show that a weak reachability
condition is necessary and sufficient for finite discovery of the op-
timal initial decision whenever it is unique. They also give a solu-
tion procedure that will detect an optimal initial decision in finite
time when the uniqueness and weak reachability conditions are
met, and stopping sets of states are appropriately chosen. In subse-
quent work, Bes and Sethi [3] adopted amore abstract approach to
exploring general conditions for the existence of forecast horizons
although these remained difficult to check in practice. However,
the assumption of uniqueness of the optimal initial decision is only
a sufficient condition for the solvability of a particular problem in-
stance. Since uniqueness is not a necessary condition for discovery
of an optimal initial decision, wewill depart from [1,2,8], in thatwe
explicitly drop the assumption that the optimal initial decision (or any
optimal decision, for that matter) is unique, allowing for the presence
of multiple optima. Moreover, we establish coalescence properties
that are not only sufficient but, unlike uniqueness andweak reach-
ability, are also necessary to solve an infinite horizon optimization
problem. We follow [6], which seeks a finite algorithm that can
solve every well-posed Markov Decision Process problem (a prob-
lem is well-posed if it is solvable). Such an algorithm is presented

in [6] for solving well-posed problems whose optimal policies are
monotone in horizon. In this paper, we showwell-posed problems
are those satisfying a coalescence property for optimal states and
we provide an algorithm that solves every such problem satisfying
some mild structural properties.

1.2. Paper outline

The rest of the paper is organized as follows. Section 2 presents
the problem statement, including the notation used, necessary as-
sumptions and an illustrative application. In Section 3,we establish
definitions of the terminology used throughout the paper, includ-
ing that of awell-posed problem, forecast horizon and coalescence,
and establish the key relationship between problem solvability, co-
alescence andwell-posed properties. The solution procedure for our
class of problems is described in Section 4. We come back to the
motivating example in Section 5 and demonstrate application of
our key results to infinite horizon single-itemproduction planning.

2. Notation and problem statement

We consider a class of infinite horizon, deterministic, discrete
time, non-stationary problems parameterized by data forecast φ ∈
Φ , where φ = (φ1, φ2, . . .), φi is a finite set of problem data
associated with period i for i = 1, 2, . . . , and Φ is the set of all
possible forecasts φ. We will often refer to Problem φ by which we
mean the problem with forecast φ ∈ Φ . Let φn

= (φ1, . . . , φn),
for n ≥ 1, denote the problem data for the first n periods from a
forecast φ in Φ . We call φn a truncated forecast at n, and Φn the
class of all truncated forecasts φn from φ ∈ Φ . Then, Φ(φn) is the
set of all forecasts θ ∈ Φ whose data for the first n periods match
that of φn, that is, θn

= φn.
For a given forecast φ ∈ Φ , the underlying system is observed

at the beginning of periods n = 1, 2, . . . to be in state sn ∈
Sn(φn−1), where Sn(φn−1) is the set of all feasible states associated
with truncated forecast φn−1 at the beginning of period n. Then,
an action yn ∈ Yn(sn;φn) is chosen and a cost cn(yn, sn;φn) is
incurred, where Yn(sn;φn) is the feasible decision space at period n,
corresponding to the set of all feasible actions when the system
is in state sn beginning period n under truncated forecast φn.
The system then transitions to state sn+1 at the end of period n,
following the state equation:

sn+1 = fn(sn, yn;φn), φn
∈ Φn, yn ∈ Yn(sn;φn), ∀n ≥ 1, (1)

where fn is the given state transition function for period n.
Then,

Sn(φn−1) = {fn−1(sn−1, yn−1;φn−1) : sn−1 ∈ Sn−1(φn−2),

yn−1 ∈ Yn−1(sn−1;φn−1)}

represents all the feasible states in period n under truncated
forecast φn−1. Finally, s1 denotes the initial state at the beginning
of period 1.

Note that implicit from the notation provided above,we assume
the following.

Remark 2.1. Sn(φn−1) only depends on the data parameters for the
first n − 1 periods from a forecast φ. Therefore, for any forecast
φ, if state sn is feasible in period n (i.e., sn ∈ Sn(φn−1)), then
sn ∈ Sn(θn−1) for all θ ∈ Φ(φn−1).

Remark 2.2. Feasible decision space Yn(sn;φn) is nonempty for
any φn

∈ Φn, sn ∈ Sn(φn−1), and all n, so that any finite horizon
feasible state or decision sequence can be feasibly extended
arbitrarily far beyond period n, for any forecast in Φ(φn).
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