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a b s t r a c t

We consider the class of stochastic games played over event trees. We suppose that the players agree
to cooperate and maximize their joint payoff. To sustain cooperation over the event tree, we use trigger
strategies. As we are dealing with a finite horizon, it is known that deviation from cooperation in the last
stage cannot be deterred, as there is no possibility for punishing the deviator(s). Consequently, we focus
on epsilon equilibria. We prove the existence of an epsilon-perfect equilibrium.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

An important issue in cooperative dynamic games is the
sustainability of the agreement over time, i.e., how to ensure
that all players stick to their cooperative controls as time goes
by. The literature in (state-space) dynamic games has dealt with
this issue along essentially two lines, namely, the design of time-
consistent mechanisms and cooperative equilibria. In a nutshell,
the determination of a time-consistent solution involves a two-
step procedure. The first step is the computation of the cooperative
solution and selection of an imputation in, e.g., the core or
Shapley value. Second, the definition of a payment schedule over
time such that: (i) the total stream of payments to a player
corresponds to her imputation in the overall cooperative game;
(ii) at any intermediate instant of time, the cooperative payoff-to-
go dominates its noncooperative counterpart. A time-consistent
solution is not an equilibrium, nor is based on unilateral-deviation
thinking, that is, either there is an agreement where all parties are
on board, or there is no agreement at all. (For a review of time
consistency in differential games, see [20].) In the second approach,
the idea is to embed the cooperative solution with an equilibrium
property, and, hence self-supported. This is achieved by letting
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the players use non-Markovian (or history-based) strategies that
effectively deter cheating on the cooperative agreement.

The objective of this paper is to design a cooperative equi-
librium solution for dynamic games played over event trees
(DGPET), that is, games where the random process is an act of
nature and is not influenced by the players’ actions. This class of
games, which involves flow (control) and stock (state) variables, is
useful to model competition and cooperation between players in-
teracting repeatedly over time in the presence of an accumulation
process. As an example, the set of players could be firms belong-
ing to the same industry, where each firm makes an investment
(control variable) to increase its production capacity (state vari-
able), and with the price of the product being dependent on all
firms’ outputs and on some random event (weather, state of the
economy, etc.). This class of games was initially introduced in [19,
10] to study noncooperative equilibria in the European natural gas
market, involving four suppliers competing over a long-term plan-
ning horizon in ninemarkets described by stochastic demand laws.
The solution concept was termed S-adapted equilibrium, where S
stands for sample of realizations of the random process (see [9] for
details). Recently, cooperative DGPET have been considered, with a
focus on the sustainability of cooperation over time (see [13,15]). In
this paper, our concern is the construction in a finite-horizon set-
ting of an approximated cooperative equilibrium solution for this
class of games.

We use a trigger strategy that is based on the following
simple rule: if cooperation has prevailed till now, then choose the
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cooperative control in the current stage; and if a deviation has
been observed, then implement a noncooperative (or punishing)
control for the rest of the game. The so-called folk theorem
about the existence of a subgame perfect equilibrium in trigger
strategies for infinitely repeated games was proved long ago (see,
e.g., [2]). A similar theorem for stochastic games is proved in [4],
see also [12]. In differential games, [18] considered strategies
with memory, which are called cooperative, as they were built as
behavior strategies incorporating cooperative open-loop controls
and feedback strategies used as threats in order to enforce the
cooperative agreement.

Folk theorems are for infinite-horizon dynamic games. It is
well known that enforcing cooperation in finite-horizon games is
more difficult. The reason is that, at the last stage, defection from
the agreement is individually rational and this deviation cannot
be punished. Using a backward-induction argument, it is easy to
show that the unique subgame perfect equilibrium in repeated
and multistage games is to implement Nash equilibrium controls
at each stage of the finite game. This theoretical result has not
always received empirical support. Indeed, experiments show that
cooperation may be realized, at least partially, in finite-horizon
games (see, e.g. [1]).

The literature has came out with different ways to cope with
the difficulties in enforcing cooperation in finite-horizon dynamic
games. For instance, in [5] it is proposed to support collusive
behavior in finite repeated games by having the players post bonds,
which can be forfeited if they detect from cooperative behavior.
The idea of ε-equilibrium was proposed and its existence for
finitely repeated games is proved in [14]. Other options can be used
in the class of finitely repeated games when there exist more than
one Nash equilibria in a one-shot game [3].

Recently, the problem of the existence of a subgame-perfect
ε-equilibrium in pure strategies has been investigated, see, e.g.,
[6,17]. The concept ofϕ-tolerance equilibriumperfect-information
games of infinite durationwhere ϕ is a function of historywas pro-
posed in [7]. A strategy profile is said to be a ϕ-tolerance equilib-
rium, if, for any history h, this strategy profile is aϕ (h)-equilibrium
in the subgame starting at h. This concept is close to the one
we investigate in this paper and to the contemporaneous perfect
ε-equilibrium proposed in [11]. Contrary to [6,7,17], we examine
finite horizon games with perfect information. Further, different
authors retained different measures for payoffs. For instance, in
[3,14] it is assumed that the payoff is the average payoff for one
stage of the game, whereas in [11] and here, the players’ payoffs
are given by a stream of discounted payments.

The rest of the paper is organized as follows: Section 2 recalls
the main ingredients of DGPET. Section 3 states the problem of
strategic support and the main results. We provide an illustrative
example in Section 4, and briefly conclude in Section 5.

2. Game over event tree

This section draws heavily on [9,13]. Let T = {0, 1, . . . , T } be
the set of periods. The stochastic process is represented by an event
tree, which has a root node n0 in period 0 and a set of nodes N t
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in period t = 1, . . . , T . Denote by a(nt
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root node n0 to a terminal node nT

l is called a scenario. Each scenario
has a probability and the probabilities of all scenarios sum up to 1.
We denote by π(nt

l ) the probability of passing through node nt
l ,

which corresponds to the sum of the probabilities of all scenarios
that contain this node. In particular, π(n0) = 1 and π(nT

l ) is equal
to the probability of the single scenario that terminates in (leaf)
node nT

l . Observe that each node nt
l ∈ N t represents a possible

sample value of the history of the stochastic process up to time t .
The tree graph structure represents the nesting of information as
one time period succeeds the other.

Denote byM = {1, . . . ,m} the set of players. For each player j ∈
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nodes. Denote by uj(nt
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At each node nt
l , t = 0, . . . , T − 1, the reward to player j

is a function of the state and the controls of all players, given by

φ
ntl
j (x(nt

l ), u(n
t
l )). At a terminal node nT
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given by the function Φ
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We assume that player j ∈ M maximizes her expected streamof

payoffs discounted at rateλj

0 < λj < 1


. The state equations and

the reward functions define the following multistage game, where
we let

x = {x(nt
l ) : nt

l ∈ N t , t = 0, . . . , T },

u = {u(nt
l ) : nt

l ∈ N t , t = 0, . . . , T − 1},

and Jj(x,u) be the payoff to player j, that is,
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s.t.

x(nt
l ) = f a(n
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l )(x(a(nt

l )), u(a(n
t
l ))), x(n0) = x0, (4)

u(a(nt
l )) ∈ Ua(ntl ), nt
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Definition 1. An admissible S-adapted strategy of player j is a
vector uj = {uj(nt

l ) : nt
l ∈ N t , t = 0, . . . , T − 1}, that is, a plan of

actions adapted to the history of the random process represented
by the event tree.

The S-adapted strategy vector of the m players is u = (uj :

j ∈ M). We can thus define a game in normal form, with payoffs
Wj(u, x0) = Jj(x,u), j ∈ M , where x is obtained from u as the
unique solution of the state equations that emanate from the initial
state x0.

If the game is played noncooperatively, then the players will
seek a Nash equilibrium in S-adapted strategies defined as follows:

Definition 2. An S-adapted Nash equilibrium is an admissible
S-adapted strategy profile uN such that for every player j ∈ M the
following condition holds:

Wj(uN , x0) ≥ Wj([uj,uN
−j], x

0),

where [uj,uN
−j] is the S-adapted strategy profile when all players

i ≠ j, i ∈ M , use their Nash equilibrium policies.

Remark 1. We suppose that the joint-optimization solution and
the Nash equilibrium in the whole game and in any subgame
are unique. The uniqueness for the joint-optimization solution
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