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a b s t r a c t

We consider the online scheduling problem onm identical machines subject to the Grade of Service (GoS)
eligibility constraints. The goal is to minimize the makespan. For fractional jobs that can be arbitrarily
split between machines and can be processed in parallel, we provide an optimal online algorithm based
on the solution of linear programming.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, scheduling problems with machine eligibility
constraints have received a lot of attention. In such problems, a job
cannot be processed by any one of the machines. Instead, it can
only be processed by a machine that belongs to a specific subset of
the machines, namely the processing set of the job. For the problem
with arbitrary processing sets, which is also called the restricted
assignment problem, Azar et al. [1] studied the online version of
minimizing the makespan onm identical machines, where ‘online’
means that jobs are revealed one by one along some list that
might be terminated at any time. Thus any online algorithm has
to immediately assign the current job to a machine without any
knowledge of the remaining jobs in the list. In [1], Azar et al.
provided a greedy-like algorithm AW to solve the problem and
showed that its competitive ratio is no more than ⌈log2 m⌉ + 1.
In addition, they presented a lower bound ⌈log2(m + 1)⌉ for the
problem, which indicates that AW is optimal when m is a power
of 2. Hwang et al. [10] observed that a further analysis on the
algorithm can imply a slightly smaller competitive ratio of log2 m+

1. Recently, Lim et al. [17] improved both the competitive ratio
of the algorithm AW and the lower bound of the problem. They
obtained a new competitive ratio ⌊log2 m⌋ +

m
2⌊log2 m⌋

and showed
that the gap between the competitive ratio and the lower bound is
nomore than an irrational numberwhich is approximately 0.1967.
It is also observed that algorithmAW is optimal when the number
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of machines can be written as a sum of two powers of 2, i.e., m =

2k
+ 2k′ for k ≠ k′. Consequently, the algorithm AW is optimal for

anym ≤ 10 exceptm = 7 = 21
+22

+20, for which, Lim et al. [17]
further improved the gap to 1

180 ≈ 0.00556.
Hwang et al. [11] addressed a scheduling problem in service

provision application, where the processing sets are inclusively
structured to distinguish different grades of service level cus-
tomers. Their problem is called machine scheduling subject to the
Grade of Service (GoS) eligibility constraints or simply the hierar-
chical scheduling in the literature. Various discussion on the com-
plexity and the offline algorithms have beenmade, where we refer
the reader to Leung and Li’s survey paper [16]. For online schedul-
ing, Bar-Noy et al. [2] presented a e + 1-competitive algorithm for
the identical machines, where e ≈ 2.71828 is the base of the natu-
ral logarithm. Another algorithm is shown to be e-competitive for
the fractional case that each job can be arbitrarily split between
machines and different parts of the same job can be processed in
parallel. They also provided a matching lower bound for the frac-
tional case. However, these bounds hold only when the number of
machines goes to infinity. Thus, it deserves to be considered the
problems with a specific number of machines. Tan and Zhang gave
such an attempt in [22], where a new algorithm for the fractional
case is designed. By constructing a linear programming (LP) formu-
lation, their algorithm can handle any finite number of machines.
As it turns out, the LP-based algorithm is optimal by numerical
calculation. For the original problem without fractional jobs, they
developed a de-fractional LP algorithm which improves the result
in [2] as well.

Other research on scheduling with the GoS eligibility con-
straints mostly focuses on either a small number of machines or
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a relatively simple setting on the processing sets. Park et al. [20]
and Jiang et al. [13] independently proposed an optimal algorithm
for two identical machines, which has a competitive ratio of 5

3 . For
m = 3, Zhang et al. [26] claimed an optimal algorithm with com-
petitive ratio 2. Tan and Zhang [22] presented algorithms form = 4
andm = 5with competitive ratios of 2.333 and2.610, respectively.
Lim et al. [17] developed improved algorithms with competitive
ratios 2.294 and 2.501 for m = 4 and m = 5, respectively. Chas-
sid and Epstein [3], Dosa and Epstein [5], and Tan and Zhang [21]
considered the online problem on two uniformmachines, with the
fractional case, the preemptive case and the general case included,
where optimal algorithms, as well as the associated competitive
analysis with respect to the speeds of the machines, are proposed.
In [12], Jiang introduced a problem where there are only two in-
clusive processing sets for all jobs, i.e., each job can either be pro-
cessed by all machines or by only the first kmachines. He provided
a 12+4

√
2

7 ≈ 2.522-competitive algorithm. Zhang et al. [27] fur-
ther designed an improved algorithm with competitive ratio 1 +

m2
−m

m2−km+k2
< 7

3 and proved a lower bound of 2 when k ≥ 3 and
m ≥

3
2 (k + 1). Hou and Kang extended the models to m uniform

machines with two different speeds [8,9], where both the general
case and the fractional case are considered. There is also research
considering the semi-online problems that some partial informa-
tion on jobs are known in advance, see e.g., [19,18,14,25,4,24].
For more online results on scheduling with the GoS eligibility con-
straints, we refer the reader to [15,23].

In this paper, we consider online scheduling on m identical
machines subject to the GoS eligibility constraints. Formally, we
are given a set of m identical machines {M1,M2, . . . ,Mm} and a
sequence of jobs J = {J1, J2, . . . , Jn} that arrive online one by
one. Once a job is presented to the online algorithm, it has to be
placed immediately on the machines. A job Jj with processing time
pj can be assigned to a machine Mi only if the machine belongs to
the job’s processing set. Due to the GoS eligibility constraints, we
assume that there are exactly m different processing sets. And for
simplicity, let us denote them by Mk = {M1,M2, . . . ,Mk} for 1 ≤

k ≤ m. Our goal is to minimize the makespan, i.e., the maximum
completion time of all jobs. Though in a previous work [22], Tan
and Zhang have designed a LP-based algorithm for the fractional
case and showed its optimality by numerical calculation, it is still
left as an open question whether the algorithm is optimal in the
theoretical sense. This paper first provides a slightly different linear
programming formulation to acquire the LP-based algorithm. Then
a new lower bound for the problem is constructed by another
linear programming formulation. The optimality of the LP-based
algorithm is confirmed by duality theory of linear programming.

The rest of the paper is organized as follows. In Section 2, we
give the LP-based algorithm and prove its competitive ratio. In
Section 3, a new lower bound is constructed to show the optimality
of the algorithm.

2. The LP-based algorithm

The idea in [22] for designing an online algorithm for the
fractional case is very simple. It just assigns jobs with the same
processing set to the machines in the same way. The proportion
of a job assigned to a machine only depends on its processing set
and the specificmachine, regardless of the processing time of itself.
We use the same idea but a slightly different linear programming
formulation to determine the proportion values.

For any fixedm ≥ 2,we construct the following linear program-
ming:

min γ

s.t.
j

i=1

xij = 1, j = 1, . . . ,m, (1)

(LP(m)) ixii +
m

j=i+1

xij = γ , i = 1, . . . ,m, (2)

xij ≥ xi,j+1, j = i, . . . ,m − 1, i = 1, . . . ,m, (3)

xij ≥ 0, j = i, . . . ,m, i = 1, . . . ,m. (4)

In fact, we use the variable xij to determine the proportion of a
jobwith processing setMj to themachineMi, i = 1, 2, . . . , j. Con-
straints (1) and (4) ensure that each job must be completely split
between its admissible machines. Constraints (2) and (3) are tech-
nical requirements that will be used in the competitive analysis.
Note that the above linear programming is almost the same with
the one arising in [22] except thatwe replace inequalities by equal-
ity constraints in (2).With such linear programming, our algorithm
can be described as follows.

The LP-based algorithm

Step 1. Solve the linear programming LP(m) and let {x(m)
ij , i ≤ j,

i, j = 1, 2, . . . ,m, γ (m)
} be the optimal solution, where

γ (m) is the optimal objective value.
Step 2. When a job Jj with the processing set Mk arrives, assign

x(m)
ik pj part of the job to machineMi for any i = 1, . . . , k.

For the sake of completeness, we also provide a proof for
the competitive ratio of the LP-based algorithm (which is seen
in [22]). Denote by Tk the total processing time of jobs with the
processing set Mk, k = 1, . . . ,m, and let C LP

f and C∗

f be the
makespan generated by the LP-based algorithm and the optimal
offline algorithm, respectively.

Lemma 2.1 ([2]). For the fractional case, the optimalmakespan C∗

f =

maxj=1,...,m
1
j

j
k=1 Tk.

Lemma 2.2 ([27]). Let 1 = (1, 1, . . . , 1)T , x = (x1, x2, . . . , xq)T be
q×1matrices and c = (c1, c2, . . . , cq) be a 1×qmatrix.A = (aij)q×q
is an invertible matrix, and the ith row vector of A is denoted as αi. If
cA−1

≥ 0, then cx ≤ (cA−11)max{α1x, α2x, . . . , αqx} for any x.

Theorem 2.1. The LP-based algorithm is feasible for the fractional
case and has a competitive ratio of γ (m) for any m ≥ 2.

Proof. The feasibility of the algorithm is due to the constraints
(1) in the linear programming. In fact, any job is assigned to the
permitted machines by Step 2. In addition, for each job Jj with the
processing set Mk, the summation of its fractional parts equals
exactly

k
i=1 x

(m)
ik pj = pj

k
i=1 x

(m)
ik = pj by (1). Thus each job must

be finished.
Now let Li be the completion time of machine Mi when the

algorithm terminates, i = 1, . . . ,m. By the algorithm’s rule in Step
2, only the jobs with processing set Mk, k ≥ i can be assigned
to the machine Mi, and the proportion of each job assigned to a
machine is independent of its processing time, thus we can get

Li =

m
k=i

x(m)
ik Tk, i = 1, . . . ,m. (5)

Note that C LP
f = maxmi=1 Li. For convenience, let C

LP
f = Li for some

i. Then we denote x(i) = (Ti, Ti+1, . . . , Tm)T and c(i) = (x(m)
ii , x(m)

i,i+1,

. . . , x(m)
im ). Consequently, we have C LP

f = c(i)x(i) by (5). Let A(i) be
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