
Operations Research Letters 43 (2015) 530–533

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Sequential scheduling on identical machines
Refael Hassin ∗, Uri Yovel Ď
Department of Statistics and Operations Research, School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

a r t i c l e i n f o

Article history:
Received 5 December 2013
Received in revised form
13 July 2015
Accepted 7 August 2015
Available online 17 August 2015

Keywords:
Sequential price of anarchy
Machine scheduling
Congestion games
Load balancing
Subgame-perfect equilibrium
Makespan minimization

a b s t r a c t

We study a sequential version of the KP-model: Each of n agents has a job to be processed on any of
m machines. Agents sequentially select a machine for processing their jobs. The goal of each agent is to
minimize the completion time of his machine. We study the sequential price of anarchy for m identical
machines under arbitrary and LPT orders, and suggest insights into the case of two unrelated machines.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We study the following dynamic game. There are n agents, de-
noted A1, . . . , An, and m machines. Agent Aj has a job that takes
pj > 0 time units if processed by any of the machines. Agents
sequentially select one of the machines for processing their jobs,
starting with A1 and ending with An. While choosing a machine, an
agent knows the choicesmade byhis predecessors. Once amachine
completes processing all the jobs assigned to it, they are instanta-
neously delivered to their agents. The goal of each agent is to have
his job delivered at the earliest possible time. We study the cor-
responding sequential price of anarchy, denoted SPoA, which is the
cost-ratio of the worst subgame-perfect equilibria of such games
to the solution that minimizes the overall makespan of the system.

The above model is a sequential version of the well-known
KP-model introduced by Koutsoupias & Papadimitriou [7]. While
the KP-model has been widely studied and extended, it seems that
in many cases, a more appropriate model should include some
form of sequentiality, since agents may arrive at different times.
Consequently, a new line of algorithmic research has been initiated
recently, which studies sequential versions of games whose simul-
taneous counterparts are well-studied. In their paper [8], Leme
et al. define the notion of sequential price of anarchy (SPoA). The
agents are indexed by their ‘‘order of arrival’’ and they choose their

∗ Corresponding author.
E-mail address: hassin@post.tau.ac.il (R. Hassin).

Ď Uri Yovel deceased June 2014.

actions sequentially, knowing only the choices made by their pre-
decessors.

We analyze the price of anarchy for m identical machines.
Specifically, we prove that SPoA is at most 2 −

1
m , and this bound

is tight. If the agents are ordered in nonincreasing order of their
job’s processing times (this is the well-known LPT rule), then this
bound on SPoA is reduced to 4

3 −
1
3m . These bounds coincide with

the approximation ratios of the Greedy algorithm (i.e., each agent
chooses a least loaded machine) in the classical List Scheduling
model of Graham [5]; however, the proof is inherently different.
Essentially, it is because in ourmodel, the agents are selfish, so they
need not choose a least loaded machine. In fact, we demonstrate
that the greedy strategy may be bad for an agent. We also discuss
SPoA for two unrelated machines, for which we conjecture that it
is bounded by 3.

We believe that our sequential framework can be developed for
other combinatorial optimization problems.

Leme et al. [8] prove that for unrelated machines, the worst
SPoA is bounded between Ω(n) and O(m · 2n); they also study the
SPoA for other games, and in [9], they study SPoA of sequential
auctions. In [2], Biló et al. improve the above bounds to 2Ω(

√
n) and

2n, respectively. In [1], Angelucci et al. study the SPoA of Isolation
Games, and in [3] de Jong et al. study a sequential decision variation
of their main model where each player controls a set of machines
and wishes to maximize the value of jobs that can be feasibly
scheduled on its machines.

Fiat et al. [4] consider another situation where selfish agents
choose their time of transmission in a shared communication
media. Transmission is successful only if there is no simultaneous

http://dx.doi.org/10.1016/j.orl.2015.08.003
0167-6377/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2015.08.003
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2015.08.003&domain=pdf
mailto:hassin@post.tau.ac.il
http://dx.doi.org/10.1016/j.orl.2015.08.003


R. Hassin, U. Yovel / Operations Research Letters 43 (2015) 530–533 531

transmission at this time. The main difference between this model
and ours is that decisions are made simultaneously and when
transmission fails the agent can repeat trying in a later time,
whereas in our case decisions are made sequentially and no regret
is possible.

2. Notation

Let N ≡ {1, . . . , n}, M ≡ {1, . . . ,m}. Thus, as we introduced
above, the n agents are Aj, j ∈ N . We denote the m machines (or
processors) by Mi, i ∈ M . Agent Aj has a job, denoted j, that takes
pj > 0 time units on any of the machines (i.e., they are identical).
We denote the list of processing times of all the agents by p :=

(p1, . . . , pn). Each agent selects one of themachines for processing
his job, thus, the action set for each Aj isM . In step j of the game, Aj
observes the current loads on all the machines, i.e., he knows the
actions chosen by A1, . . . , Aj−1, and chooses amachine for process-
ing his job. Hence, the strategy for Aj is a function sj : M j−1

→ M .
We denote j ∈ Mi if sj = i, i.e., Aj choosesMi for his job, and we say
thatMi is Aj’s machine.After all agents chose theirmachines, i.e., the
strategy profile s ≡ (s1, . . . , sn) ∈ Mn has been determined, a com-
plete job schedule is obtained. For a given such schedule,wedenote
by Sj and Cj the start time and the completion time of j, respectively
(j ∈ N), and by Li the (final) load on Mi, i.e., Li ≡


j∈Mi

pj; our
schedule will always be clear from the context, so we do not write
Sj(s), Cj(s) etc. We denote the average load by L̄ :=

1
m

m
i=1 Li =

1
m

n
j=1 pj. We denote by Cmax themakespan of the schedule, i.e.,

Cmax = max
j∈N

Cj = max
i∈M

Li.

Once a machine completes processing all the jobs assigned to it,
they are (instantaneously) delivered to their agents, hence the cost
of Aj is the (final) load of his machine, i.e., it is Li satisfying j ∈ Mi.
The goal of each agent is to minimize this cost, i.e., to have his
job delivered at the earliest possible time. This is an extensive form
game, and so it always possesses (pure) subgame perfect equilibria,
which can be calculated by backward induction. Consequently, we
refer to any schedule of the jobswhichwas obtainedby the sequen-
tial decision process as a subgame perfect equilibrium, or equilibrium
for short.We denote by SPE the set of these equilibria (correspond-
ing to the given game in context).

We denote by C∗
max themakespan of an optimal schedule, i.e., it is

theminimumpossible value of themakespan of the system, ideally
achieved if a central authority were to schedule the entire set of
jobs.

We study the corresponding sequential price of anarchy of the
game, denoted SPoA, which is the cost-ratio of theworst subgame-
perfect equilibrium to the optimal makespan, that is:

Definition 2.1 (Sequential Price of Anarchy [8]).

SPoA = max
s∈SPE

Cmax(s)
C∗
max

.

(Cmax(s) is Cmax in the schedule corresponding to the strategy profile
s ∈ Mn.)

3. SPoA for identical machines

We start with three simple examples with n = 3 agents and
m = 2machines. In these exampleswe use a sufficiently small ϵ >
0 in one of the processing times, so no ties ever occur. However, the
conclusions are also valid when ϵ = 0, and the bounds obtained
are exact and not asymptotic. If ϵ = 0 the obtained solution is just
one of several possibilities, so any implementation should include
a tie-breaking rule. Thus,we use ϵ in the examples for convenience,
but when we refer to SPoA, we substitute ϵ = 0, since this always
yields the highest possible value.

2

2

2

2

1

1

1

1

1

3

3

Fig. 1. The game-tree associated with Example 3.1 (n = 3, m = 2).

Example 3.1. There are n = 3 agents and m = 2 machines. The
processing times are p = (p1, p2, p3) = (1, 1 + ϵ, 2). Without
loss of generality, assume that A1 chooses M1 for his job. Then A2
chooses M2 for his job, since he realizes that in this case A3 will
choose M1, so A2’s cost will be L2 = p2 = 1 + ϵ, which is best
possible. Thus, in the resulting equilibrium, jobs 1 and 3 select
M1 (we write this as 1, 3 ∈ M1) 2 ∈ M2, hence the loads are
L1 = 3, L2 = 1 + ϵ, so Cmax = 3. However, the optimal schedule
(with minimum possible makespan) is 1, 2 ∈ M1 and 3 ∈ M2,
achieving C∗

max = 2 + ϵ. Consequently, SPoA =
3
2 .

Fig. 1 depicts the game-tree associated with Example 3.1.
Vectors at the leaves are the cost vectors (i.e., the loads). The solid
lines show the subgame-perfect strategies, and the (unique) path
from the root to the leaf corresponding to the black circle is the
equilibrium solution. The bold circle corresponds to an optimal
solution. The values of Cmax and C∗

max are underlined in their
corresponding cost vectors.

Note that in the above example, each agent acts greedily,
i.e., chooses a least loaded machine. However, the next example
shows that this strategy need not yield a minimal makespan for
that agent.

Example 3.2. Consider the previous example with a small change
to the processing times so that p = (1, 1− ϵ, 2). Let A1 chooseM1.
Now A2 reasons as follows: if he chooses M2 for his job (which is
currently empty), then A3 will choose M2 as well, hence A2’s cost
will be 3− ϵ. However, if he choosesM1, A3 will chooseM2, and so
A2’s cost will be 2−ϵ. Thus, in the resulting equilibrium, 1, 2 ∈ M1
and 3 ∈ M2, hence the loads are L1 = 2− ϵ, L2 = 2, so Cmax = 2. It
is easily verified that this is also an optimal schedule, i.e., C∗

max = 2.
Consequently, SPoA = 1.

Examples 3.1 and 3.2 also demonstrate that an agentmay prefer
to have his job longer, ceteris paribus: the fact that p2 is 1 + ϵ (in
3.1) rather than 1 − ϵ (in 3.2) gives A2 considerable advantage.

Observe that the order of agents crucially affects the outcome:

Example 3.3. Consider again Example 3.1 but change the order to
p = (2, 1, 1 + ϵ). Then, the equilibrium is 1 ∈ M1, 2, 3 ∈ M2,
yielding C∗

max = Cmax = 2 + ϵ; consequently, SPoA = 1.

We now show that the sequential price of anarchy is at most
2 −

1
m . This bound matches the bound on the approximation ratio

of the greedy algorithm in Graham’s List Scheduling, however, the
additional step of Lemma 3.1 is required because the agents are
selfish, so (when m > 2) they may apply a strategy other than
the greedy one, that is, a-priori they need not choose a least loaded
machine.

The following example demonstrates this fact:

Example 3.4. Consider m ≥ 3 machines and n = m + 1 jobs,
whose processing times are (p1, . . . , pm+1) = (K , 1 − ϵ, 1, 1, . . . ,
1, K+ϵ). Let A1 chooseM1.We claim that in the resulting schedule,
A2 will schedule his job (with p2 = 1 − ϵ) on M1 (starting at



Download	English	Version:

https://daneshyari.com/en/article/1142120

Download	Persian	Version:

https://daneshyari.com/article/1142120

Daneshyari.com

https://daneshyari.com/en/article/1142120
https://daneshyari.com/article/1142120
https://daneshyari.com/

