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a b s t r a c t

Linear programming formulations for the discounted and long-run average MDPs have evolved along
separate trajectories. In 2006, E. Altman conjectured that the two linear programming formulations of
discounted and long-run averageMDPs are,most likely, amanifestation of general properties of singularly
perturbed linear programs. In this note we demonstrate that this is, indeed, the case.
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1. Introduction

The connection between linear programming and Markov
Decision Processes (MDPs) was launched in the 1960s, with the
papers by D’Epenoux [8], De Ghellinck [7] and Manne [16]. While
the linear programming formulation for the discounted MDP
was relatively straightforward, extension to the long-run average,
multi-chain, MDP proved challenging and required nearly two
decades to arrive at a single linear program supplied, by Hordijk
and Kallenberg [11,12], that completely solves such a multi-chain
MDP. We refer the reader to Kallenberg [14,15], Puterman [19]
and Altman [1] for excellent, comprehensive, treatments of
linear programming methods for discrete time Markov decision
processes. Even though the approaches to discounted and long-
run average MDPs evolved along separate trajectories, Tauberian
theorems provided a theoretical connection between the two
cases with the discount parameter approaching unity from below;
e.g. see Blackwell [6] and Veinott [20,21].

Parametric linear programming has a long history that is well
documented in many excellent textbooks (e.g., see Murty [17]).
However, majority of the so-called sensitivity analyses presented
in operations research books focus on perturbations of the objec-
tive function coefficients or of the right hand side vector; some-
times extending also to changes in non-basic columns. To the best
of our knowledge, Jeroslow [13] was, perhaps, the first to consider

∗ Corresponding author.
E-mail address: K.Avrachenkov@inria.fr (K. Avrachenkov).

perturbations of the entire coefficientmatrix of a linear program. In
the context of MDP, the results of [13] have been applied to Black-
well optimality [10] and to perturbed MDPs [2,4]. In Pervozvanskii
and Gaitsgori [18] the authors focus on the singularly perturbed
case where a discontinuity can arise as the perturbation parame-
ter approaches a critical value. In the latter and in the more recent
book by Avrachenkov et al. [4] the main cause of that discontinu-
ity has been the change in the rank of the coefficient matrix at the
critical value of the perturbation parameter. Hence, it was perhaps
surprising that such discontinuities can also arise when the rank
does not change, as shown very recently in [3].

In 2006, Eitan Altman conjectured that the two linear program-
ming formulations of discounted and long-run averageMDPsmust
be a manifestation of some general properties of singularly per-
turbed linear programs. In this note we demonstrate that this is,
indeed, the case by first extending the results in [3] and then for-
mally applying new singular perturbation results to theMDP prob-
lem.

2. General perturbed linear programming problem

Consider the family of linear programming problems parame-
terized by ε > 0:

max⟨c(0)
+ εc(1), x⟩

s. t. (A(0)
+ εA(1))x = b(0)

+ εb(1),
x ≥ 0,

(1)

where c(0), c(1)
∈ Rn, b(0), b(1)

∈ Rm and A(0), A(1)
∈ Rm×n. The

optimal value, the solution set and the feasible set of Problem (1)
are denoted as F∗(ε), θ∗(ε) and θ(ε), respectively.
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The goal of the perturbed linear programming approach is to
construct, if possible, a linear programming problem that does not
depend on ε and such that its optimal solutions are feasible limiting
optimal for (1) in the sense prescribed below by Definition 1. The
linear program with this property will be called a limiting LP.

Definition 1. A vector x ∈ Rn is called feasible limiting optimal
for the perturbed linear program (1) if x ∈ lim infε↓0 θ(ε) and
limε↓0 F∗(ε) = ⟨c(0), x⟩.

Let us introduce and discuss a set of assumptions:
Assumption (H0): There exists a positive γ0 and a bounded set B ⊂

Rn such that θ(ε) ⊂ B for every ε ∈ (0, γ0].
Assumption (H∗

0 ): There exists a positive γ0 and a bounded set B ⊂

Rn such that θ∗(ε) ⊂ B for every ε ∈ (0, γ0].
Assumption (H1): The matrix A(0) has rank m.
Assumption (H2): For all ε sufficiently small and positive, the rank of
A(0)

+ εA(1) is equal to m.
Note that Assumption (H1) implies Assumption (H2). Also,
Assumption (H0) implies Assumption (H∗

0 ).
The unperturbed problem is said to satisfy Slater condition if

θ(0) ∩ Rn
++

≠ ∅, where Rn
++

def
={x ∈ Rn

: x > 0}. (2)

In [18], it has been shown that if Assumptions (H0) and (H1)
are valid and if the Slater condition (2) is satisfied, then the
unperturbed LP is the limiting problem for the perturbed program
(1). That is, every optimal solution of the former is limiting optimal
for the latter. In [18] it has also been shown that if Assumption
(H1) is not satisfied, the discontinuity of θ(ε) at ε = 0 may
occur. This is a case of so-called singular perturbation. The authors
of [18] proposed a limiting LP to deal with the case of singular
perturbation. Then, in [3] it has beendemonstrated that if the Slater
condition is not satisfied for the unperturbed LP, the discontinuity
of θ(ε) at ε = 0 may occur with Assumptions (H0) and (H1) being
satisfied. The authors of [3] have constructed a limiting LP for the
case when the Slater condition is not satisfied for the unperturbed
problem. Belowwe show that a result similar to that obtained in [3]
can be established with the replacement of (H0) by (H∗

0 ).
Assume that (H1) is satisfied and define the set

J0 := {i ∈ {1, . . . , n} : ∃ x ∈ θ(0) such that xi > 0}. (3)

According to this definition, if j ∉ J0, then xj = 0 for every
x ∈ θ(0). Moreover, if J0 ≠ ∅, convexity of θ(0) implies that there
exists x̂ ∈ θ(0) such that x̂j > 0 for every j ∈ J0. Note that J0
can be determined by solving n independent linear programming
problems maxx∈θ(0) xj, with j = 1, . . . , n.

Consider the following linear program

max{⟨c(0), x0⟩ : x0 ∈ θ1}
def
= F∗

1 , (4)

where

θ1
def
={x0 : ∃ (x0, x1) ∈ Θ1}, (5)

and

Θ1 = {(x0, x1) ∈ Rn
× Rn

: x0 ∈ θ(0),

A(0)x1 + A(1)x0 = b(1), x1j ≥ 0 ∀j ∉ J0}. (6)

Note that,

θ1 ⊂ θ(0) and therefore F∗

1 ≤ F∗(0).

Slater condition (2) is equivalent to having J0 = {1, 2, . . . , n}.
If this is the case, then θ1 = θ(0) (provided that Assumption (H1)
is satisfied), and the problem (4) is equivalent to the unperturbed
problem. If the Slater condition is not satisfied, these two problems
are not equivalent.

Following [3], let us introduce the following extended version
of the Slater condition.

Definition 2. We shall say that the extended Slater condition of
order 1 (or, for brevity, ES-1) is satisfied if there exists (x̂0, x̂1) ∈ Θ1
such that x̂1j > 0 for every j ∉ J0 and x̂0j > 0 for every j ∈ J0.

Theorem 1. Let Assumptions (H∗

0 ) and (H2) be satisfied. Then

lim sup
ε↓0

θ∗(ε) ⊂ θ1 (7)

and

lim sup
ε↓0

F∗(ε) ≤ F∗

1 . (8)

If, in addition, Assumption (H1) and the ES-1 condition are satisfied,
then

lim sup
ε↓0

θ∗(ε) ⊂ θ∗

1 , (9)

where θ∗

1 is the set of optimal solutions of problem (4), and

lim
ε↓0

F∗(ε) = F∗

1 . (10)

Also, any optimal solution x0 of the problem (4) is limiting optimal for
the perturbed problem (1).

Proof. Most steps of the proof are similar to the corresponding
steps of the proof of Theorem 2.1 in [3], and we will only indicate
the steps that differ from those used in the aforementioned proof.

Let us introduce the following notations. Given a finite set S,
denote by |S| the number of elements of S. Let Sm := {J ⊂

{1, 2, . . . , n} : |J| = m}, so |Sm| =
 n
m


. Given a matrix D ∈ Rm×n

and an index set J ∈ Sm, the matrix DJ ∈ Rm×m is constructed by
extracting from D the set ofm columns indexed by the elements of
J . In a similarway, given a vector x ∈ Rn and J ∈ Sm, we denote by xJ
the vector of Rm constructed by extracting from x the coordinates
xj, j ∈ J (that is, xJ

def
={xj}, j ∈ J).

In Lemmas 3.1 and 3.2 of [3] (see also [5,9]) it was established
that

Sm = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅,

where Ω1 and Ω2 are defined by the equations

Ω1 := {J ∈ Sm : (A(0)
+ εA(1))J is nonsingular for ε ∈ (0, γ )}

≠ ∅,

Ω2 := {J ∈ Sm : (A(0)
+ εA(1))J is singular for all ε ∈ [0, γ )}

(here and in what follows, γ stands for a positive number small
enough).

Also, it was established that, if

xJ(ε) := [(A(0)
+ εA(1))J ]

−1(b0 + εb1) (11)

(J ∈ Ω1) and if

lim sup
ε↓0

∥xJ(ε)∥ < ∞, (12)

then xJ(ε) allows the power series expansion

xJ(ε) =

∞
l=0

εlxlJ , ∀ε ∈ (0, γ ). (13)

LetΩ∗

1 ⊂ Ω1 be such that J ∈ Ω∗

1 if and only if there exists a subse-
quence ε′

→ 0 such that the vector x(ε) = {xj(ε)}, j = 1, . . . , n,
the non-zero elements of which are equal to the corresponding
non-zero elements of xJ(ε) = {xj(ε)}, j ∈ J (with xJ(ε) being as
in (11)) satisfies the inclusion

x(ε′) ∈ θ∗(ε′).
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