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a b s t r a c t

This paper proposes a new necessary condition for the infeasibility of nonlinear optimization problems,
that becomes also sufficient under a convexity assumption,which is stated as a Pareto-criticality condition
of an auxiliary multi-objective optimization problem. This condition is evaluated in a search that either
leads to a feasible point or to a point at which the infeasibility conditions hold. The resulting infeasibility
certificate has global validity in convex problems and has at least a local meaning in generic nonlinear
problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Certificates of infeasibility can be useful within optimization
algorithms in order to allow the fast determination of the in-
consistency of the problem constraints, avoiding spending large
computational times in infeasible problems, and also providing a
guarantee that a problem is indeed not solvable. A series of results
in interior-point based linear programming has been related to the
construction of infeasibility certificates [4]. The issue of detecting
infeasibility in optimization problems has been particularly impor-
tant in the context of mixed integer linear programming [2]. In re-
cent convex analysis literature, some infeasibility certificates have
been derived for conic programming [12,4] and for the monotone
complementarity problem [3]. This last result has been extended
to general convex optimization problems [1]. More general studies
involving nonlinear programming were presented in [6] and [13].
Recently, an augmented Lagrangian method has been introduced
to detect infeasibility [5,9].

The main purpose of this paper is to characterize infeasibility
of nonlinear optimization problems as a Pareto-criticality condi-
tion of an auxiliary problem. We show a structural similarity be-
tween the Kuhn–Tucker conditions for Efficiency (KTE) and a new
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necessary condition for infeasibility (INF), which also becomes suf-
ficient under the assumption of strict convexity. The application
of the proposed certificate is straightforward even in the case of
generic nonlinear functions, without the assumption of convexity.
In that case, the certificate has local meaning only. The infeasibility
condition proposed in this paper is a new infeasibility certificate in
finite-dimensional spaces.

The proposed procedure is composed of the following steps:
(i) An auxiliary unconstrained multi-objective optimization prob-
lem is defined. (ii) A Pareto-critical point of this auxiliary problem
is determined. (iii) This point is either a feasible point of the original
problem or a point at which the (INF) condition holds. (iv) If (INF)
holds on some point, a necessary infeasibility condition is estab-
lished (this condition is also sufficient in convex problems). Such a
verification is straightforward, leading to a potentially useful infea-
sibility certificate. The key issue that is exploited in the proposed
procedure is the fact that the regions where the (INF) condition
reaches criticality are often relatively large. This means that points
in those regions can be found using numerical algorithms which
perform inexact searches, requiring low computational costs. No
previous certificate was based on the search for points belonging
to this specific region. This means that, even though other meth-
ods may also present good computational behavior, the present
method expands the repertoire of principles that can be used for
the purpose of supporting infeasibility certificates.

The remainder of the paper is organized as follows: Section 2 re-
views the backgroundmaterial. Section 3 presents the infeasibility
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condition (INF). Section 4 presents the algorithms used in testing
the (INF) condition. Section 5 presents the computational experi-
ments.

2. Background

2.1. Notation

Most of the notation adopted here is rather standard. In partic-
ular, the following operators, applied to vector arguments, mean:

(≤) Each coordinate of the first argument is less than or equal
to the corresponding coordinate of the second argument;

(<) Each coordinate of the first argument is smaller than the
corresponding coordinate of the second argument;

(≺) Each coordinate of the first argument is less than or equal
to the corresponding coordinate of the second argument,
and at least one coordinate of the first argument is strictly
smaller than the corresponding coordinate of the second
argument.

Similarly the operators (≥), (>) and (≻) can be defined in the
analogousway. Also F(x̄) =


∇f1(x̄) ∇f2(x̄) · · · ∇fp(x̄)


denotes the

Jacobian matrix of the function f (·) : Rn
→ Rp at the point x̄ and

G(x̄) = [∇g1(x̄) ∇g2(x̄) · · · ∇gm(x̄)] denotes the Jacobian matrix of
the function g(·) : Rn

→ Rm at the point x̄.

2.2. Constrained optimization

Consider the optimization problem defined by:

min
x

f (x)
subject to : g(x) ≤ 0

(1)

in which f (·) : Rn
→ Rp and g(·) : Rn

→ Rm are vector functions.
The set of feasible points for this problem is denoted by

Ω ,

x ∈ Rn

| g(x) ≤ 0

. (2)

In the particular case of p = 1 the problem (1) becomes a single-
objective optimization problem and when p > 1 the problem
becomes multi-objective. In the last case, a feasible point x ∈ Rn

of the decision variable space is said to be dominated by another
feasible point x̄ ∈ Rn if f (x̄) ≺ f (x). The solution set of the multi-
objective optimization problem is defined as the set P ⊂ Ω of
feasible points that are not dominated by any other feasible point.
This set is called the efficient solution set, or the Pareto-optimal set. In
order to state general results, the solution set of a single-objective
problem is also denoted by P .

The following compactness condition is assumed here:

Assumption 2.1. Assume that there is a subset of the constraint
functions, {g1(·), g2(·), . . . , gk(·)}, with k ≤ m, such that the set
Ωc ⊂ Rn: defined by

Ωc = {x | g1(x) ≤ 0, g2(x) ≤ 0, . . . , gk(x) ≤ 0}

is a non-empty compact set. �

This assumption holds in a large class of problems, for instance
when there is a ‘‘box’’ in the decision variable space where the
search is to be conducted.

2.3. Pareto optimality

In multi-objective optimization, the main focus is on producing
a trade-off solution set representing the best possible compromises
between different (usually conflicting) objectives. Thus, in order
to adopt a suitable concept of optimality, the Pareto-optimality is
used:

Definition 2.1. Let Ω ⊂ Rn be a non-empty set of feasible
solutions and f (·) : Rn

→ Rp be a vector function. A feasible
solution x̄ ∈ Ω is called a Pareto-optimal solution of the multi-
objective optimization problem (1) if and only if there does not
exist any x ∈ Ω such that f (x) ≺ f (x̄).

2.4. Kuhn–Tucker conditions for efficiency

Let λ ∈ Rp andµ ∈ Rm. The Kuhn–Tucker necessary conditions
for the efficiency of a solution x̄ to problem (1) are stated as [7,10]:

(KTE)


F(x̄)λ + G(x̄)µ = 0
λ ≻ 0, µ ≥ 0
g(x̄) ≤ 0
µigi(x̄) = 0; ∀ i = 1, . . . ,m.

(3)

Notice that the Karush–Kuhn–Tucker conditions for optimality
of the single-objective case are a particular case of KTE.

3. Conditions of infeasibility

For problem (1), given a point x̄ ∈ Rn, one of the four possibili-
ties below must happen (by exhaustion):

(a) x̄ ∈ P , which means that the Kuhn–Tucker necessary condi-
tions for Efficiency (KTE) must hold.

(b) x̄ ∈ Λ, with Λ defined as the set of points for which the infea-
sibility conditions (INF) hold:

(INF)


∃i | gi(x̄) > 0
G(x̄)µ = 0
µ ≻ 0
gj(x̄) < 0 ⇒ µj = 0

(4)

for some vector of multipliers µ ∈ Rm.
(c) x̄ ∈ Ω and x̄ ∉ P .
(d) x̄ ∉ Ω and x̄ ∉ Λ.

Points that satisfy the (KTE) conditions are Pareto-critical for
problem (1). The condition (INF) is very similar to (KTE). As will be
shownhere, the points that satisfy (INF) conditions are also Pareto-
critical w.r.t. another auxiliary problem. Define the vector function
ĝ(·) : Rn

→ Rm as:

ĝi(x) =


0, ∀ x | gi(x) ≤ 0
gi(x), ∀ x | gi(x) > 0 i = 1, . . . ,m. (5)

From the above definition, the following auxiliary problem is
defined:

min
x

ĝ(x). (6)

The corresponding efficient solution set of this problem is denoted
by A:

A =

x ∈ Rn

|̸ ∃ x̄ ∈ Rn such that ĝ(x̄) ≺ ĝ(x)

. (7)

It should be noticed that under Assumption 2.1, it can be stated
that: A ≠ ∅ and A ⊂ Ωc . Denote by ĝ(A) the image set of
function ĝ(·) overA. The following lemma comes directly from the
definition of the function ĝ(·):

Lemma 3.1. The following statements hold:

(i) Ω ≠ ∅ ⇒ ĝ(A) ≡ 0, Ω ≡ A
(ii) Ω = ∅ ⇒ ĝ(x) ≻ 0 ∀ x ∈ A. �

Proof. Statement (i) comes from the fact that if the problem is
feasible (Ω ≠ ∅), then each function ĝi(x) will reach its minimum
on ĝi(x) = 0 for every x ∈ Ω . Therefore, the Pareto-set A of the
auxiliary problem (6) is identical to Ω , i.e., Ω ≡ A, and ĝ(A) ≡ 0.
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