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a b s t r a c t

In this paper, dynamic games for a class of finite horizon linear stochastic system governed by Itô’s
difference equation are investigated. Particularly, both Pareto and Nash strategies are discussed. After
defining the equilibrium condition, sufficient conditions for the existence of the strategy sets are obtained,
which are associated with the solvability of the corresponding generalized difference Riccati equations
(GDREs). Furthermore, an iterative algorithm is proposed to solve the related GDREs and a simple
numerical example is given to show the reliability and usefulness of the considerable results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Linear quadratic (for short, LQ hereafter) dynamic games and
their applications have been investigated extensively in several
reports, see [1,4,15,2]. The concepts of Pareto optimization and
a Nash game have their roots in decision making, and they have
been applied to various control fields. Although dynamic LQ games
provide a very general framework for optimal control, the same
concept should also be considered for a wider class of various
systems.

Over the last decade, stochastic control problems governed
by Itô’s equation have attracted considerable research interest.
Rami et al. [14] and Huang et al. [6] studied the indefinite
stochastic LQ control for discrete-time systems with state and
control-dependent noises in finite horizon and infinite horizon,
respectively. Zhang et al. [16] made a contribution to H2/H∞ con-
trol for discrete-time stochastic linear systems with state and
disturbance-dependent noise. Recently, stochastic Nash game and
Pareto optimal strategy for continuous-time and discrete-time
stochastic Itô systems have been widely studied, see [3,7–9,11,12,
10] and the references therein. Althoughmany results are available
on stochastic dynamic games of Nash and Pareto optimal strate-
gies, they are limited to infinite horizon, corresponding results for
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finite horizon discrete-time stochastic Itô systems have not re-
ported. Therefore, a general dynamic game with state and control-
dependent noise for finite horizon discrete-time stochastic linear
systems deserves further study.

In this paper, we concentrate our attentions on the Pareto and
Nash strategies for finite horizon discrete-time linear stochastic
systems with state and control-dependent noise. It will be shown
that for our general systems, the existence conditions of equilib-
rium strategies are associated with the solvability of the corre-
sponding GDREs.

The rest of the paper is organized as follows. In Section 2, some
preliminaries are made; Section 3 contains our main theorems
of Pareto and Nash strategies; Section 4 presents a numerical
algorithm to solve the corresponding GDREs.

For convenience, throughout this paper we adopt the following
traditional notations.

A′: the transpose of a matrix A; A−1: the inverse of a matrix
A. A > 0: the positive definite symmetric matrix A. Rn: the
n-dimensional real vector space with the corresponding 2-norm
∥ · ∥. Rm×n: the vector space of all m × n matrices with entries
in R. Sn(R): the set of all real n × n symmetric matrices; I: the
identity matrix; E(x): the mathematical expectation of x; N: the
set of positive integers; Nt := {0, 1, 2, . . . , t}.

2. Preliminaries

In this section, we shall give the dynamic systems to be dis-
cussed and present somepreliminary results that are needed in our
later development.
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Consider the following discrete-time stochastic system with
N-players involving state and control-dependent noise

x(t + 1) = A(t)x(t) +

N
i=1

Bi(t)ui(t)

+


C(t)x(t) +

N
i=1

Di(t)ui(t)


w(t),

x(0) = x0 ∈ Rn, t ∈ NT ,

(1)

where x(·) ∈ Rn, ui(·) ∈ Rmi , i = 1, 2, . . . ,N , are the system
state, and ith control strategy of player i, respectively. A(·) and
C(·) are n × n matrix-valued functions, Bi(·) and Di(·) are n × mi
matrix-valued functions. {w(t) ∈ R, t ∈ NT } is a sequence of
real random variables defined on a complete probability space
{Ω, F , µ}, which is a wide sense stationary, second-order process
with E(w(t)) = 0 and E(w(t)w(s)) = δst with δst being a
Kronecker function. Similar to [13, Definition 3.1.2], we denote the
σ -algebra generated by w(s), i.e., Ft = σ(w(s) : s ∈ Nt).

We assume that the control trajectory ui belongs to an admis-
sible control space Ui, and denoting the joint control (u1(·), . . . ,
uN(·)) ∈ U1 × · · · × UN = U, the cost function for each player is
defined by

Ji(x0, u1(·), . . . , uN(·)) =

T
t=0

E

x′(t)Qi(t)x(t) + u′

i(t)Ri(t)ui(t)

,

(2)

where Qi(·) and Ri(·), i = 1, 2, . . . ,N , are n × n and mi × mi sym-
metric matrix-valued functions, respectively. The joint admissible
control space is taken to be the space of square integrable functions
as

U
∆
= L2F (NT ,Rm) =


u : NT × Ω → Rm,

T
t=0

E ∥u(t)∥2 < ∞


.

Obviously, for any T ∈ N and (x0, u1(·), . . . , uN(·)) ∈ Rn
× U,

there exists a unique solution x(·) ≡ x(·; x0, u1(·), . . . , uN(·)) ∈

L2F (NT ,Rm) to (1) under some mild conditions on the coefficients.
It should be noted that cost function (2) includes ui(·) only, it
is possible to consider more general forms of cost function (for
example, Ji(·) also explicitly contains uj(·), j ≠ i, etc.). We take the
above form for simplicity of the presentation in this paper.

We concentrate on considering a situation in which player i
designs his control strategy on the basis of the state information.
The design specifications of the player i can be expressed in terms
of a cost function Ji(·). First, it is assumed that all the players
decide their strategies through mutual cooperation under various
constraints. The solution to such a problem is found in the class
of Pareto optimal strategies. This means that no deviation from
the Pareto optimal strategy can decrease the costs of all players.
Second, a major step toward an understanding of non-cooperative
games with several players is provided by the newly introduced
concept of non-cooperative equilibrium. In this case, a set of
strategies is formulated as a Nash equilibrium if, whenever a single
player modifies his strategy, his own payoff will not increase [5].
These two strategies are investigated in next section.

First, we introduce a lemma which will be used in our subse-
quent analysis [16].

Lemma 1. Consider the following discrete-time stochastic system
x(t + 1) = A(t)x(t) + B(t)u(t) + [C(t)x(t) + D(t)u(t)]w(t),
x(0) = x0 ∈ Rn, t ∈ NT .

(3)

Suppose T ∈ N is given and P(0), P(1), . . . , P(T + 1) is an
arbitrary family of matrices in Sn(R), then for any x0 ∈ Rn, we have

T
t=0

E

x(t)
u(t)

′

Q (P(t))

x(t)
u(t)


= E


x′(T + 1)P(T + 1)x(T + 1)


− x′

0P(0)x0, (4)

where Q (P(t)) is given in Box I.

3. Main results

3.1. Pareto optimal strategy

In this subsection, Pareto optimal strategies as one of the
cooperative game theory are considered. It is assumed that each
player wants to minimize his own cost function described in (2). A
more mathematical formulation is given below.

A Pareto solution is a set (u1(·), . . . , uN(·)), which minimizes

J(x0, u1(·), . . . , uN(·)) =

N
i=1

γiJi(x0, u1(·), . . . , uN(·)),

0 < γi < 1,
N
i=1

γi = 1 (5)

for some γi, i = 1, 2, . . . ,N [9].
From the above description, we can see that the stochastic

LQ regulator problem is a special case of this problem when the
players agree on a choice of γi, i = 1, 2, . . . ,N , as weight factors.

Now we introduce a type of generalized difference Riccati
equation associated with the Pareto optimal strategies.

Definition 1. The following constrained matrix-valued difference
equation

−P(t) + N (P(t + 1)) − L′(P(t + 1))
×R−1(P(t + 1))L(P(t + 1)) = 0,

P(T + 1) = 0,
γiRi(t) + B′

i(t)P(t + 1)Bi(t) + D′

i(t)P(t + 1)Di(t) > 0,
t ∈ Nt ,

(6)

where i = 1, . . . ,N , N (P(t + 1)), R(P(t + 1)), and L(P(t + 1))
are given in Box II is called a generalized difference Riccati equation
(GDRE).

The Pareto optimal strategies are given below.

Theorem 1. Consider the stochastic system (1) and the cost func-
tion (5). If GDRE (6) admits a solution P(t) > 0, t ∈ NT , then the
state feedback Pareto strategy set is given below.

u∗(t) =

u∗

1(t)
...

u∗

N(t)

 = K(t)x(t)

= −R−1(P(t + 1))L(P(t + 1))x(t). (7)

Furthermore,

J(x0, u∗

1(·), . . . , u
∗

N(·)) = x′

0P(0)x0. (8)

Proof. From Lemma 1 and Eq. (6), by using the square completion
technique, for any P(t) ∈ Sn(R), and (x0, u1(·), . . . , uN(·)) ∈ Rn

×

U, we obtain

J(x0, u1(·), . . . , uN(·))
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