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a b s t r a c t

The blocking probability of a finite-source bufferless queue is a fixed point of the Engset formula, for
which we prove existence and uniqueness. Numerically, the literature suggests a fixed point iteration.
We show that such an iteration can fail to converge and is dominated by a simple Newton’s method, for
which we prove a global convergence result. The analysis yields a new Turán-type inequality involving
hypergeometric functions, which is of independent interest.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Engset formula is used to determine the blocking proba-
bility in a bufferless queueing system with a finite population of
sources. Applications to bufferless optical networks [6,20,12,14,13]
have sparked a renewed interest in the Engset model and its
generalizations [5]. Sztrik provides a literature review of applica-
tions [18], including multiprocessor performance modelingand the
machine interference problem, in which machines request service
from one or more repairmen. The analysis herein was inspired by
a recent application in sizing vehicle pools for car-shares [4].

The queue under consideration is theM/M/m/m/N queue [10].
This is a bufferless queue with N sources that can request service,
provided by one of m identical servers. When all m servers are in
use, incoming arrivals are blocked and leave the system without
queueing. The Engset formula is used to determine the probabil-
ity P that any random arrival is blocked. The Engset formula is
[11, Equation (62)]

P = lim
P ′→P
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whereM(P) =
α

1 − α (1 − P)

(Engset formula)
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The number of sources N , the number of servers m, and the of-
fered traffic per-source α are given as input. It is worthwhile to
note that subject to some technical assumptions, the Engset for-
mula remains valid under general distributions (i.e. G/G/m/m/N)
[19, Section 5.4].

It is not obvious if any value of P satisfies the Engset formula,
or if multiple values of P might satisfy it. To the authors’ best
knowledge, this work is the first to establish the existence and
uniqueness of a solution (Section 2).

Remark. The limit appearing in the Engset formula is a technical
detail to avoid (for ease of analysis) the removable discontinuity
at P = 1 − 1/α. We mention that f may admit nonremovable
discontinuities at some negative values of P (at which the limit
does not exist), though this does not affect the analysis.

Remark. Let λ be the idle source initiation rate, the rate at which a
free source (i.e. one not being serviced) initiates requests, and 1/µ
be the mean service time. If P is the blocking probability, M(P) =

λ/µ. This substitution removes P from the right-hand side of the
Engset formula [11, Equation (70)]. However,λ is often unknown in
practice, and hence this method is only applicable in special cases,
or subject to error produced from approximating λ.

2. Properties of the Engset formula

If the number of servers m is zero, any request entering the
queue is blocked (P = 1). If there are at least as many servers as
there are sources (m ≥ N), any request entering the queue can
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immediately be serviced (P = 0). Finally, the case of zero traffic
(α = 0) corresponds to a queue that receives no requests. We
assume the following for the remainder of this work:

Assumption. m andN are integerswith 0 < m < N .α is a positive
real number.

The following lemmas characterize f defined in the Engset
formula and are used to establish several results throughout this
work:

Lemma 1. f is strictly decreasing on [0, ∞).

Lemma 2. f is convex on [1 − 1/α, ∞) ⊃ [1, ∞).

Owing partly to Lemma 1, our first significant result is as
follows:

Theorem 3. There exists a unique probability P⋆ satisfying the Engset
formula.

Proofs of these results are given in the Appendix. The proof of
Theorem 3 establishes that f (0) − 0 and f (1) − 1 have opposite
signs. Therefore, P⋆ can be computed via the bisection method on
the interval [0, 1] applied to the map

P → f (P) − P. (1)

3. Computation

3.1. Fixed point iteration

The literature suggests the use of a fixed point iteration
[9, page 489]. This involves picking an initial guess P0 for the
blocking probability and considering the iterates of f evaluated at
P0. Specifically,

P0 ∈ [0, 1]
Pn = f (Pn−1) for n > 0. (fixed point iteration)

We characterize convergence in the following result:

Theorem 4. If α ≤ 1 and |f ′(0)| < 1, the fixed point iteration con-
verges to P⋆.

While the first inequality appearing above is a restriction on
the per-source traffic, the second inequality is hard to verify, as it
involves the derivative of f . This inspires the following:

Corollary 5. If α ≤ 1 and N ≥ 2m, the fixed point iteration con-
verges to P⋆.

The condition N ≥ 2m requires there to be twice as many
sources as there are servers, satisfied in most (but not all)
reasonable queueing systems.

Proofs of these results are given in the Appendix.

3.2. Newton’s method

Newton’smethoduses first-derivative information in an attempt
to speed up convergence. In particular,

P0 ∈ [0, 1]

Pn = Pn−1 −
f (Pn−1) − Pn−1

f ′(Pn−1) − 1
for n > 0. (Newton’s method)

Often, convergence results for applications ofNewton’smethod are
local in nature: they depend upon the choice of initial guess P0. By
using the convexity established in Lemma 2, we are able to derive
a global result for Newton’s method:

Theorem 6. If α ≤ 1, Newton’s method converges to P⋆.

Table 1
Comparison under N = 20 and α =

1
4 .

Servers Probability Number of iterations
m P⋆ Fixed point Newton

1 8.322e−01 6 3
2 6.725e−01 7 3
3 5.235e−01 7 3
4 3.879e−01 8 3
5 2.693e−01 9 3
6 1.714e−01 8 4
7 9.718e−02 8 4
8 4.753e−02 7 4
9 1.947e−02 6 4

10 6.554e−03 5 3
11 1.798e−03 4 3
12 4.005e−04 4 3
13 7.194e−05 3 3
14 1.028e−05 3 3
15 1.142e−06 3 3
16 9.518e−08 3 2
17 5.599e−09 2 2
18 2.074e−10 2 2
19 3.638e−12 2 2

Table 2
Comparison under N = 20 and α =

1
2 .

Servers Probability Number of iterations
m P⋆ Fixed point Newton

1 9.087e−01 7 3
2 8.187e−01 8 3
3 7.303e−01 9 3
4 6.436e−01 10 3
5 5.591e−01 11 3
6 4.773e−01 11 3
7 3.985e−01 14 3
8 3.235e−01 15 4
9 2.531e−01 16 4

10 1.885e−01 16 4
11 1.310e−01 14 4
12 8.259e−02 12 4
13 4.527e−02 10 4
14 2.041e−02 8 4
15 7.124e−03 6 4
16 1.827e−03 5 4
17 3.254e−04 4 3
18 3.623e−05 3 3
19 1.907e−06 3 3

A proof of this result is given in the Appendix. Superficially,
Theorem 6 seems preferable to Corollary 5 as it does not place
restrictions on N or m. In practice, we will see that Newton’s
method outperforms the fixed point iteration, and that it performs
well even when α > 1 (Section 4).

4. Comparison of methods

Tables 1–4 compare the performance the fixed point iteration
and Newton’s method for a queueing system with N = 20
sources (thoughwemention that the observed trends seem to hold
independent of our choice of N). The initial guess used is P0 =

1
2 .

The stopping criterion used is |Pn+1 − Pn| ≤ tol = 2−24.
Bisection halves the search interval at each step, so that the

maximum possible error at the nth iteration is 2−n. It follows
that to achieve a desired error tolerance tol, bisection requires
⌈− lg(tol)⌉ = ⌈− lg(2−24)⌉ = 24 iterations independent of the
input parameters (for this reason, it is omitted from the tables).
The fixed point iteration fails to converge or performs poorly
(sometimes taking hundreds of iterations) precisely when the
sufficient conditions of Corollary 5 are violated. Newton’s method
outperforms both algorithms by a wide margin, often converging
in just a few iterations.
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