
Operations Research Letters 44 (2016) 342–347

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Low-order penalty equations for semidefinite linear complementarity
problems
Chen Zhao a,∗, Ziyan Luo b, Naihua Xiu a

a Department of Mathematics, Beijing Jiaotong University, Beijing 100044, PR China
b State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, PR China

a r t i c l e i n f o

Article history:
Received 14 September 2015
Received in revised form
7 March 2016
Accepted 7 March 2016
Available online 15 March 2016

Keywords:
Semidefinite linear complementarity
problem

Low-order penalty equation
Cartesian P-property
Convergence rate

a b s t r a c t

We extend the power penalty method for linear complementarity problem (LCP) (Wang and Yang,
2008) to the semidefinite linear complementarity problem (SDLCP). We establish a family of low-order
penalty equations for SDLCPs. Under the assumption that the involved linear transformation possesses
the Cartesian P-property, we show that when the penalty parameter tends to infinity, the solution to
any equation of this family converges to the solution of the SDLCP exponentially. Numerical experiments
verify this convergence result.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The semidefinite linear complementarity problem (SDLCP),
which has provided a unified model for various problems arising
from combinatorial optimization [1], engineering [4], system and
control theory [3] etc., was initially formulated by Kojima et al.
in 1997 [16]. Due to its wide applications in a variety of fields,
growing interests are then emerging both in theoretical analysis
and computation methods for SDLCPs. From the theoretical per-
spective, properties onmerit functions and complementarity func-
tions [26,28,23], optimality conditions [21], and solution existence
and uniqueness [9,10,6,20] of SDLCPs have been extensively in-
vestigated. Based upon the achieved theoretical results, concrete
numerical methods such as interior-point methods [16,18,19],
non-interior methods [7,29], smoothing Newton methods [15,13]
etc. for solving SDLCPs have been proposed.

As one of the most important methods for constrained opti-
mization problems, the low-order penalty method has recently
received a great deal of attention in solving complementarity
problems. For instance, Wang and Yang [27] proposed a power
penalty method with the low-order ℓ1/k (k ≥ 1) penalty term
for solving the classic linear complementarity problems (LCPs) and
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established the exponential convergence rate under the cases that
the involved coefficient matrix is a nonsingular M-matrix (pos-
itive definite with all off-diagonal entries non-positive) or a di-
agonal matrix. More recently, this power method scheme was
further extended to handle more general complementarity prob-
lems such as the nonlinear complementarity problems (NCPs)with
strong monotonicity [14] and with the uniform P-property [25],
the parabolic linear complementarity problem arising from Amer-
ican options pricing problems [22], and the second-order cone
complementarity problems (SOCPs) with positive definite linear
mappings [11] and with the strong monotone nonlinear map-
pings [12]. It is well-known that the SOCP is an important ex-
tension of classic complementarity problems by substituting the
involved nonnegative orthant with the so-called second order
cone. As another important extension of classic complementar-
ity problems, the semidefinite complementarity problem (SDCP) is
built in the context of positive semidefinite cone. As we havemen-
tioned that the low-order penalty methods have been used very
successfully for solving LCPs, NCPs and SOCPs. A natural question
then arises: Canwe handle the SDCPwith thewell-performed low-
order penaltymethod?Wewill answer this question in an affirma-
tive way.

Note that the low-order penalty term in the aforementioned
papers mostly takes a specific power penalty form, and most of
the conditions to guarantee the solution convergence are somehow
very restricted. The other motivation in this paper is to provide a
class of low-order penalty approaches under somemild conditions.
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Inspired by the Cartesian product structure which has been widely
studied in complementarity problems with different underlying
linear spaces [8,11,6], we will consider the following SDLCP with
Cartesian products: find a matrix X ∈ S such that

L(X) + Q ∈ S+, X ∈ S+, ⟨L(X) + Q , X⟩ = 0, (1)

where S denotes the linear space of all n × n block-diagonal
real symmetric matrices with m blocks of size n1, . . . , nm, n =m

i=1 ni, S+ denotes the cone of symmetric positive semidefinite
matrices in S, L : S → S is a linear operator and Q ∈ S is a
given symmetric matrix, ⟨X, Y ⟩ is the inner product of X and Y ,
i.e. ⟨X, Y ⟩ = trace(XTY ).

By employing the aforementioned low-order penalty scheme,
together with the tool of Löwner operators defined in the
symmetric matrix space (see Section 2.2 for details), the following
class of nonlinear equations will be employed to approximate the
SDLCP (1):

L(X) + Q − λ[G(X)]
1
k = 0, (2)

where λ > 1 is some parameter, G : S → S is a Löwner operator
(see Definition 2.2) generated by some real-valued function g :

R → R satisfying the following conditions:

(a) g(t) is monotonically non-increasing and continuous;
(b) g(t) = 0 if t ≥ 0;
(c) g(t) > −t if t ∈ [−a, 0), with some positive scalar a.

By taking the advantage of the Cartesian P-property introduced
by Chen and Qi in [6], we will establish the convergence of the
proposed class of low-order penalty methods for Cartesian P-
SDLCP with the same exponential convergence rate as shown in
the context of LCPs [27], NCPs [14,25] and SOCPs [11,12] when λ
tends to infinity. This indicates that the low-order penalty scheme
can be successfully extended to handle SDLCPs aswell. Besides, the
penalty term in our low-order equation (2) apparently contains
the aforementioned power penalty form as a special case. In this
regard, ourmodel providesmore choices for the low-order penalty
forms to deal with the complementarity problems. Furthermore, it
is worth pointing out that the Cartesian P-property in our model
is milder than the strong monotonicity as required in most of the
above mentioned references, which shows that our approach can
treat a broader class of complementarity problems. All these are
our main contributions.

This paper is organized as follows. In Section 2, some
preliminary results including the Cartesian P-property and some
properties for the SDLCP and Eq. (2) are reviewed, and the
definition and the monotonicity of Löwner operators are recalled
and developed for sequential analysis. In Section 3, properties of
solutions to the proposed nonlinear matrix equation are proposed
and the convergence analysis of the proposed class of low-order
penalty methods is established. In Section 4, we carry out some
numerical experiments in order to verify our convergence results.

Notations which will be used throughout the paper are
introduced here. For a matrix A ∈ S, Aν ∈ Rnν×nν denotes the νth
block of A (ν = 1, . . . ,m). ∥ · ∥F denotes the Frobenius-norm on
S, i.e. ∥X∥F =

m
ν=1 ∥Xν∥F = (

n
i=1 |λi|

2)1/2. ∥ · ∥p denotes the
Schatten p-norm on S, i.e. ∥X∥p =

m
ν=1 ∥Xν∥p = (

n
i=1 |λi|

p)1/p.
We use S++ to denote the cone of all positive definite matrices in
S. When X ∈ S+ (X ∈ S++, respectively), we simply write X < 0
(X ≻ 0, respectively).

2. Preliminary results

To begin, we first recall some related preliminary definitions
and properties.

2.1. The SDLCP

Analogous to the case of classic linear complementarity
problem, the SDLCP can be equivalently converted into some
variational inequality problem over the positive semidefinite
matrix cone S+. Considering the Cartesian product structure of the
underlying n×nmatrix spacewithm blocks of size n1, . . . , nm, the
equivalent reformulation is presented as follows.

Lemma 2.1 ([8]). The SDLCP (1) is equivalent to the following
variational inequality problem: find X ∈ S+ such that for any Y ∈ S+,

⟨Y − X, L(X) + Q ⟩ > 0,

i.e.,

⟨Yν − Xν, Lν(X) + Qν⟩ > 0, ∀ν = 1, . . . ,m, (3)

where Lν(X) denotes the νth block of L(X).

Lemma 2.1 allows us to characterize the solution existence
of the original SDLCP by means of that of the variational
inequality problem (3). In this vein, the following lemma for the
mentioned solution existence is presented,which is extended from
[8, Proposition 3.5.1] by substituting Rn with S.

Lemma 2.2. Let K ⊆ S be a closed, convex set and F : S → S be
continuous. If there exists a matrix X ref

∈ K such that the set

L′

6 := {X ∈ K : max
16ν6m

⟨Xν − X ref
ν , Fν(X)⟩ 6 0},

is bounded, then the solution set of the variational inequality problem:
find X ∈ K , such that, for all Y ∈ K ,

⟨Y − X, L(X) + Q ⟩ > 0,

is nonempty and compact.

Besides the solution existence of the SDLCP, the uniqueness
is also very important and has attracted great attention. As a
generalization of P-matrices, Chen and Qi [6] introduced the so-
called Cartesian P-property for linear transformations which can
ensure both the solution existence and solution uniqueness for the
corresponding SDLCP.

Definition 2.1 ([6]). A linear transformation L : S → S is said to
have the Cartesian P-property if for any 0 ≠ X ∈ S

max
16ν6m

⟨Xν, Lν(X)⟩ > 0.

It is easy to see that when S contains only one block (i.e.,
m = 1), the Cartesian P-property becomes the strongmonotonicity
of L, i.e., ⟨X, L(X)⟩ > 0 for all 0 ≠ X ∈ S, and when S
contains only diagonal matrices (i.e., m = n), it becomes the P-
property of matrices. Similar to the P-matrix, a linear Cartesian P
transformation on S has the following essential property.

Lemma 2.3 ([6]). A linear transformation L : S → S has the
Cartesian P-property if and only if there exists a constant

α(L) = min
∥X∥F=1

max
16ν6m

⟨Xν, Lν(X)⟩ > 0,

i.e., there exists a constant α(L) > 0 such that for any X ∈ S,

max
16ν6m

⟨Xν, Lν(X)⟩ > α(L)∥X∥
2
F . (4)

The solution existence and uniqueness, sometimes called the
globally unique solvability (GUS for short) asmentioned in [9], was
established by Chen and Qi [6] under the Cartesian P-property.

Theorem 2.1 ([6]). If the linear transformation L : S → S satisfies
the Cartesian P-property, then the SDLCP (1) has a unique solution for
any Q ∈ S.
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