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a b s t r a c t

The Quality-and-Efficiency-Driven (QED) regime provides a basis for solving asymptotic dimensioning
problems that trade off revenue, costs and service quality. We derive bounds for the optimality gaps
that capture the differences between the true optimum and the asymptotic optimum based on the QED
approximations. Our bounds generalize earlier results for classical many-server systems. We also apply
our bounds to a many-server system with threshold control.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The theory of square-root staffing inmany-server systems ranks
among the most celebrated principles in applied probability. The
general idea behind square-root staffing is as follows: a finite
server system is modeled as a system in heavy traffic, where the
number of servers s is large, whereas at the same time, the system
is critically loaded. Under Markovian assumptions, and denoting
the load on the system by λ, this can be achieved by setting s =
λ + β

√
λ and letting λ → ∞ while keeping β > 0 fixed, or

alternatively settingλ = s−γ
√
s and letting s→∞while keeping

γ > 0 fixed. In both cases, the system reaches the desirable
Quality-and-Efficiency-Driven (QED) regime.

The QED regime refers to mathematically defined conditions
in which both customers and system operators benefit from the
advantages that come with systems that operate efficiently at
large scale, which is particularly relevant for systems in e.g. health
care, cloud computing, and customer services. Such conditions
manifest themselves in a low delay probability and negligible
mean delay, despite the fact that the system utilization is high.
Properties of this sort can be proven rigorously for systems such
as the M/M/s queue by establishing stochastic-process limits
under the aforementioned QED scalings [2]. The QED regime also

∗ Corresponding author.
E-mail addresses: jaron.sanders@tue.nl (J. Sanders), s.c.borst@tue.nl

(S.C. Borst), a.j.e.m.janssen@tue.nl (A.J.E.M. Janssen), j.s.h.v.leeuwaarden@tue.nl
(J.S.H. van Leeuwaarden).

creates a natural environment for solving dimensioning problems
that achieve an acceptable trade-off between service quality and
capacity. Quality is usually formulated in terms of some target
service level. Take for instance the probability that an arriving
customer experiences delay. The target could be to keep the delay
probability below some value ϵ ∈ (0, 1). The smaller ϵ, the better
the offered quality of service. Once the target service level is set,
the objective from the operator’s perspective is to determine the
highest load λ such that the target ϵ is still met.

For theM/M/s queue, it was shown by Borst et al. [1] that such
dimensioning procedures combined with QED approximations
have certain asymptotic optimality properties. To illustrate this,
consider the case of linear costs, i.e. waiting cost is b per customer
per unit time, and staffing cost is c per server per unit time.
Denoting the total cost by Kλ(s), it can be shown that when s =
λ+ β

√
λ and β > 0,

Kλ(s) = bλ
Cλ(s)
s− λ

+ cs = cλ+
√

λ

cβ +

b
β
Cλ(s)


(1)

with Cλ(s) the delay probability in theM/M/s queue. The first term
cλ represents the cost of the minimally required capacity λ, while
the second term gathers the cost factors that are all O(

√
λ). Halfin

and Whitt [2] showed that in the QED regime Cλ(s) converges to
a nondegenerate limit C0(β) ∈ (0, 1), so that in the QED regime
one only needs to determine β0 = argminβ{cβ + bC0(β)/β}, and
then set s0 = [λ + β0

√
λ] as an approximation for the optimal

number of servers sopt = argmins{Kλ(s)}. Borst et al. [1] called this
procedure asymptotic dimensioning.
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Based on the QED limiting regime, one expects that such
approximate solutions are accurate for relatively large loads λ. For
the optimality gaps |s0−sopt| and |Kλ(s0)−Kλ(sopt)|, i.e. inaccuracies
that arise from the fact that the actual system is of finite size,
Borst et al. [1] showed through numerical experiments that
the approximation s0 performs exceptionally well in almost all
circumstances, even when systems are only moderately sized. A
rigorous underpinning for these observations was provided by
Janssen et al. [5], who used refinedQED approximations to quantify
the optimality gaps. The delay probability, for instance, was shown
to behave as C0(β)+ C1(β)/

√
λ+O(λ−1), which in turn was used

to estimate the optimality gaps for the dimensioning problem in
(1). Zhang et al. [8] obtained similar results for optimality gaps in
the context of the M/M/s + M queue, in which customers may
abandon before receiving service.

Motivated by the results in [5,8], Randhawa [6] took a more
abstract approach to quantify optimality gaps of asymptotic di-
mensioning problems. He showed under general assumptions that
when the approximation to the objective function is accurate up
toO(1), the prescriptions that are derived from this approximation
are o(1)-optimal. The optimality gap thus becomes zero asymptot-
ically. This general setup was shown in [6] to apply to the M/M/s
queues in the QED regime, which confirmed and sharpened the
results on the optimality gaps in [5,8] by implying that |Kλ(s0) −
Kλ(sopt)| = o(1). The abstract framework in [6], however, can only
be applied if refined approximations as in [5,8] are available.

Such refined approximations were recently developed in [4,7]
for a broad class of many-server systems operating in the QED
regimewith λ = s−γ

√
s, and equippedwith an admission control

policy and a revenue structure. For a wide range of performance
metrics, Ms(γ ) say, these refinements are of the form Ms(γ ) =
M0(γ )+M1(γ )/

√
s+· · · . Themethod in [4,7] can deliver asmany

higher-order terms as needed, and generate all the refinements
obtained in [5,8,6].

In the present paper, we demonstrate how the results in [4,7]
can be leveraged to determine the optimality gaps of novel asymp-
totic dimensioning problems for a large class of many-server sys-
tems. Ourmain result (Theorem 1) provides generic bounds for the
optimality gaps that become sharper whenmore terms in the QED
expansion forMs(γ ) are included.

2. Model description

2.1. Service systems with admission control and revenues

We consider many-server systems with s parallel servers, to
which customers arrive according to a Poisson process with rate λ.
Every customer requires an exponentially distributed service time
withmean one. If a customer arrives and finds k−s ≥ 0 customers
waiting, the customer is allowed to join the queuewith probability
ps(k − s) and is rejected with probability 1 − ps(k − s). The
total number of customers in the system evolves as a birth–death
process {Xs(t)}t≥0 and has a stationary distribution

πs(k) =



Z−1, k = 0,

Z−1
(sρ)k

k!
, k = 1, 2, . . . , s,

Z−1
ssρk

s!

k−s−1
i=0

ps(i), k = s+ 1, s+ 2, . . . ,

(2)

where ρ = λ/s, Z =
s

k=0(sρ)k/k! + ((sρ)s/s!)Fs(ρ), and Fs(ρ) =
∞

n=0 ps(0) · · · · ·ps(n)ρ
n+1. The stationary distribution in (2) exists

if and only if the relative load ρ and the admission control policy
{ps(k)}k∈N0 are such that Fs(ρ) <∞.

Next, we assume that the system generates revenue at rate
rs(k) ∈ R when there are k customers in the system. The sequence
{rs(k)}k∈N0 will be called the revenue structure. The stationary rate
at which the system generates revenue is then given by

Rs(γ ) =

∞
k=0

rs(k)πs(k), (3)

which depends via the equilibrium distribution on the admission
control policy. Ref. [7] discusses the problem of maximizing the
revenue rate over the set of all admission control policies.

One advantage of considering general admission control
policies and revenue structures is that one can study different
service systems and steady-state performance measures through
one unifying framework. For example, the equilibrium behavior of
the canonical M/M/s/s, M/M/s, and M/M/s + M systems can be
recovered by choosing ps(k− s) = 0, ps(k− s) = 1, and ps(k− s) =
1/(1 + (k − s + 1)θ/s), respectively. Here, θ corresponds to the
rate at which waiting customers abandon from the M/M/s + M
system. Similarly, the delay probability Ds(γ ) =


∞

k=s πs(k) can
be recovered by setting rs(k) = 1[k ≥ s], the mean queue
length Qs(γ ) =


∞

k=s(k − s)πs(k) is recovered when considering
rs(k) = (k − s)1[k ≥ s], and the average number of idle servers
Is(γ ) =

s−1
k=0(s− k)πs(k) follows from rs(k) = (s− k)1[k < s].

As a primary examplewewill consider a scenariowhere besides
the waiting cost b > 0 incurred per customer per unit time, a
fee a > 0 is received for every served customer, and a penalty
d ≥ 0 is imposed for rejecting a customer. The latter cost accounts
for the degree of revenue loss from the admission control policy.
Denoting by DR

s (γ ) =

∞

k=s(1 − ps(k − s))πs(k) the probability
that an arriving customer is rejected, and by Ws(γ ) =


∞

k=s((k −
s + 1)/s)ps(k − s)πs(k) the expected waiting time of an arriving
customer, the total system revenue rate is given by

Rs(γ ) = aλ(1− DR
s (γ ))− bλWs(γ )− dλDR

s (γ ). (4)

By virtue of Little’s law λWs(γ ) = Qs(γ ) and λ(1 − DR
s (γ )) =

s− Is(γ ), and since λ = s−γ
√
s, the revenue rate can equivalently

be expressed as

Rs(γ ) = as+ dγ
√
s− (a+ d)Is(γ )− bQs(γ ). (5)

This scenario therefore corresponds to the revenue structure

rs(k) =

ak+ dγ

√
s− d(s− k) k < s,

as+ dγ
√
s− b(k− s), k ≥ s.

(6)

2.2. QED scaling and refinements

We now discuss how to apply the QED scaling to obtain an
asymptotic expansion for Rs(γ ) for general revenue structures
{rs(k)}k∈N0 , which we will exploit in Section 3 to characterize
the asymptotic optimality gap. We impose the following three
conditions throughout this paper:
(i) The arrival rate and system size are coupled via the scaling

λ = s− γ
√
s;

(ii) lims→∞ |ps(0) · · · ps(n) − f ((n + 1)/
√
s)| = 0 where f (x) is

either a continuous, nonincreasing function, or f (x) = 1[x ≤
η];

(iii) There exist sequences {ns}s∈N+ , {qs}s∈N+ with qs > 0, and
a continuous function r(x) that satisfy the scaling condition
lims→∞ |(rs(k)− ns)/qs − r((k− s)/

√
s)| = 0.

It is proven in [4,7] that lims→∞(Rs(γ )− ns)/qs = R0(γ ) under
conditions (i)–(iii), with

R0(γ ) =

 0
−∞

r(x)e−
1
2 x

2
−γ xdx+


∞

0 r(x)f (x)e−γ xdx
Φ(γ )

φ(γ )
+


∞

0 f (x)e−γ xdx
. (7)
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