
Operations Research Letters 44 (2016) 366–369

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

What is the best greedy-like heuristic for the weighted set covering
problem?
Francis J. Vasko a,∗, Yun Lu a, Kenneth Zyma b

a Department of Mathematics, Kutztown University, Kutztown, PA 19530, USA
b Computer Science Department, Kutztown University, Kutztown, PA 19530, USA

a r t i c l e i n f o

Article history:
Received 9 September 2015
Received in revised form
13 March 2016
Accepted 13 March 2016
Available online 22 March 2016

Keywords:
Heuristics
Weighted set covering problem
Greedy algorithms
Column knowledge functions
Row knowledge functions

a b s t r a c t

The greedy heuristic for the weighted set covering problem is a ‘‘column knowledge’’ construction
heuristic where cost and row coverage information are used to insert columns into the solution. In this
paper, we analyze the performance of construction heuristics that expand on the column knowledge
functions described by Vasko and Wilson (1984) and row knowledge functions described by Ablanedo-
Rosas and Rego (2010). If redundant columns are removed from solutions, then the basic greedy heuristic
gives essentially the best results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The set covering problem (SCP) is a classical combinatorial
optimization problem. Its goal is to find a subset of columns
that cover all the rows of a zero–one matrix at minimal cost.
Many real life problems can be modeled with the SCP, such as
strategic planning [12], production planning [13], facility location
problems [9], area selection in conservation biology [6], as well as
a variety of scheduling and routing problems.

Karp [4] showed that the SCP is NP-complete, whichmeans that
though there exist algorithms to solve the SCP precisely, which are
based on branch-and-bound and branch-and-cut techniques [2],
these algorithms can only solve instances of the SCP of a limited
size and are time consuming. Therefore, considerable effort has
been focused on discovering heuristics andmetaheuristics that can
find optimal or near optimal solutions to large-scale SCP problems
in a reasonable amount of time. The latest works on metaheuristic
approaches for the SCP include Genetic Algorithms, Ant Colony
Optimization, Simulated Annealing, and Tabu Search, just to name
a few. For a discussion of recent heuristic and metaheuristic
approaches for solving the SCP, we suggest you consult Ren, Feng,
Ke and Zhang [7].

∗ Corresponding author. Tel.: +1 610 683 4417; fax: +1 610 683 4765.
E-mail address: vasko@kutztown.edu (F.J. Vasko).

Greedy heuristics construct a feasible solution to an SCP by
adding columns to the solution until all the rows of the matrix
are covered. These heuristics are fast and simple to implement,
but are usually used only as starting points in more complex
metaheuristics. For example, they may be used to generate an
initial population for population-based metaheuristics [5,8] or
used to generate the columns that comprise a concentrated
problem in a heuristic concentration approach to the SCP [11].

In this paper, we simply wish to determine how well
greedy, single-pass, construction heuristics perform (on their own)
based on combining both row and column knowledge functions
motivated by the work of Vasko and Wilson [10] and Ablanedo-
Rosas and Rego [1].

In Section 2, we will formally define the weighted set covering
problem. In Section 3, wewill first define a family of greedy, single-
pass, column knowledge construction heuristics based on thework
of Vasko and Wilson [10]. Next, we will define a family of greedy,
single-pass, row knowledge construction heuristics based on the
work of Ablanedo-Rosas and Rego [1]. Finally, we will combine the
work of Vasko andWilson [10] and Ablanedo-Rosas and Rego [1] to
define a family of single-pass construction heuristics that can use
both column knowledge as well as row knowledge information in
constructing a solution to the weighted set covering problem. In
Section 4, we will empirically test the performance of 50 of these
heuristics on 65weighted set covering problems fromBeasley’s OR
test library [3]. Finally, we will summarize our results in Section 4.

http://dx.doi.org/10.1016/j.orl.2016.03.007
0167-6377/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2016.03.007
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2016.03.007&domain=pdf
mailto:vasko@kutztown.edu
http://dx.doi.org/10.1016/j.orl.2016.03.007

F.J. Vasko et al. / Operations Research Letters 44 (2016) 366–369 367

2. Problem statement and background

2.1. Problem statement

The set covering problem (SCP) is the problem of covering the
rows of an m-row, n-column, zero–one matrix (aij) by a subset of
the columns atminimum cost. Specifically, let A = (aij) be anm×n
zero–one matrix with M = {1, 2, . . . ,m} and N = {1, 2, . . . , n}
sets of rows and columns respectively. Column j is said to cover a
row i ∈ M if aij = 1. Each column j ∈ N has associated with it a
positive real cost cj. The goal is to find a subset S ⊆ N , where each
row i ∈ M is covered by at least one column j ∈ S, with aminimum
cost.

A mathematical formulation for the SCP is:

Minimize
n

j=1

cjxj (0)

subject to
n

j=1

aijxj ≥ 1, i = 1, . . . ,m, (1)

xj ∈ {0, 1}, j = 1, . . . , n. (2)

where xj is one if column j is in the solution and zero otherwise.
Constraint set (1) ensures that each row is covered by at least one
column and constraint set (2) ensures that the xj’s take on only the
values zero or one. In this paper, we will focus on the weighted set
covering problem (WSCP). That is, when the cjs are not all equal to
one. When all the cjs are equal to one, the problem is referred to as
the minimum cardinality or unit-cost set covering problem.

2.2. Background

Ablanedo-Rosas and Rego [1] introduced a number of normal-
ization rules, i.e., row knowledge functions, used to generate sur-
rogate constraints for the SCP and showed that these rules perform
better than the classical greedy rule (when no redundant columns
are removed). Previously, Vasko andWilson [10] designed aheuris-
tic for solving large set covering problems efficiently using a pro-
cedure that incorporates a set of column knowledge functions. In
the next section, we will define a family of single-pass construc-
tion heuristics based on both the work of Vasko and Wilson [10]
and the work of Ablanedo-Rosas and Rego [1] that use both row
and column knowledge functions.

3. A family of single-pass construction heuristics

As previously defined, let M be the set of all rows, Mj the set of
rows covered by column j; N the set of all columns, Ni the set of
columns covering row i. Let R be the set of uncovered rows and S
the set of columns included in a solution (i.e. S = {jεN | xj = 1}).
The pseudo code for the family of column knowledge heuristics
based on the work of Vasko and Wilson [10] is described below.

3.1. A family of greedy column knowledge single-pass construction
heuristics

Step 0: Set R = M, S = ∅, t = 1, where M = {1, 2, . . . ,m}. Go
to Step 1.

Step 1: If R = ∅, go to Step 2.
Otherwise, let Kj = |Mj ∩ R| for all j ∈ N , where N =

{1, 2, 3, . . . , n}, and choose j∗ = argmin{f (cj, Kj) | Kj >
0} where f (cj, Kj) is defined below.
Set R = R\Mj∗ , S = S∪{j∗}, t = t+1,Mj = {i ∈ M | aij =

1}, and Kj denotes the number of positive coefficients of xj
in those rows of the current constraint set not yet covered.
Go to Step 1.

Step 2: Sort the elements of S based on decreasing cj values.
Consider the elements i ∈ S in order, and if S \ {i} is a
feasible cover, set S = S \ {i}.
When all i ∈ S have been considered, S defines a prime
cover (a cover with no redundant columns).

Vasko andWilson [10] made use of the following seven column
knowledge functions f (cj, Kj): (1) cj, (2) cj/Kj, (3) cj/(log2 Kj),
(4) cj/(Kj log2 Kj), (5) cj/(Kj ln Kj), (6) cj/K 2

j , (7) (cj)1/2/K 2
j .

Using each of the seven column knowledge functions, seven
solutions to an SCP can be constructed that are not necessarily
unique. Step 2 is used to very efficiently remove any unneeded
(redundant) columns that may have entered the solution early,
but are no longer needed in the final solution. We will now define
pseudo code for a family of row knowledge heuristics based on the
work of Ablanedo-Rosas and Rego [1].

3.2. A family of greedy row knowledge single-pass construction
heuristics

Step 0: Set R = M, S = ∅, t = 1, where M = {1, 2, . . . ,m}. Go
to Step 1.

Step 1: If R = ∅ go to Step 2.
Otherwise, let Li =

j∈Ni

aij, ∀i ∈ R, where Li is the sum
of all ones in row i and g (Li) is a row knowledge function
defined below.
Choose j∗ = argmin{cj/[

i∈R aijg (Li)] | jεN \ S}.

Set R = R \ Mj∗ , S = S ∪ {j∗}, t = t + 1, where
N = {1, 2, 3, . . . , n} and Mj = {i ∈ M | aij = 1}. Go
to Step 1.

Step 2: Sort the elements of S based on decreasing cj values.
Consider the elements i ∈ S in order, and if S \ {i} is
a feasible cover, set S = S \ {i}. When all i ∈ S have
been considered, S defines a prime cover (a cover with no
redundant columns).

Ablanedo-Rosas and Rego [1]made use of the following ten row
knowledge functions g (Li):
1. g(Li) = 1: All 1’s (Chvatal’s Rule)
2. g(Li) =

1
Li
: Absolute Coefficient Sum (ACS)

3. g(Li) =

1
Li

2
: Second Power ACS

4. g(Li) =

1
Li

1/2

: Floor of Half Power ACS

5. g(Li) =

1
Li

1/2
: Half Power ACS

6. g(Li) =

1
Li

3/2
: 1.5 Power ACS

7. g(Li) =
1

Li−1 : Adjusted ACS

8. g(Li) =

1

Li−1

2
: Second Power Adjusted ACS

9. g(Li) =

1

Li−1

1/2
: Half Power Adjusted ACS

10. g(Li) =

1

Li−1

3/2
: 1.5 Power Adjusted ACS.

Functions 1 through 10 were studied by Ablanedo-Rosas and
Rego [1], but as indicated in the pseudo code above, theywere only
combinedwith one column knowledge function—the basic greedy.
We note that their fourth row knowledge function, because it is
taking the floor, will be 1 for Li = 1 and 0 for Li > 1. To avoid
zero division in the algorithm, we set this function equal to 1 in
all cases. We could just compare the basic greedy heuristic (col-
umn knowledge function #2) to the other six column knowledge
functions and to the ten row knowledge functions, but we were
interested in defining a family of greedy, single-pass construction
heuristics which used both column and row knowledge in select-
ing the next column to enter the solution.

Download English Version:

https://daneshyari.com/en/article/1142142

Download Persian Version:

https://daneshyari.com/article/1142142

Daneshyari.com

https://daneshyari.com/en/article/1142142
https://daneshyari.com/article/1142142
https://daneshyari.com

